精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)是定义在R上的奇函数,g(x)=f(x)+ax3+2,若g(2)=6,则g(-2)=-2.

分析 由条件求得f(2)+8a=4,再根据g(-2)=-f(2)-8a+2 求得结果.

解答 解:∵函数f(x)是定义在R上的奇函数,g(x)=f(x)+ax3+2,
若g(2)=f(2)+8a+2=6,则f(2)+8a=4.
∴g(-2)=f(-2)-8a+2=-f(2)-8a+2=-4+2=-2,
故答案为:-2.

点评 本题主要考查函数的单调性和奇偶性的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.-1与5的等差中项是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.给下列五个命题:
①若方程x2+(a-3)x+a=0有一个正实根,一个负实根,则a<0;
②函数$y=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$是偶函数,但不是奇函数;
③函数f(x)的值域是[-2,2],则函数f(x+1)的值域为[-3,1];
④设函数y=f(x)的定义域为R,则函数y=f(1-x)与y=f(x-1)的图象关于y轴对称;
⑤一条曲线$y=\left\{\begin{array}{l}3-{x^2}(x∈[-\sqrt{3},\sqrt{3}])\\{x^2}-3(x∈(-∞,-\sqrt{3})∪(\sqrt{3},+∞))\end{array}\right.$和直线y=a(a∈R)的公共点个数是m,则m的值不可能是1.
其中正确命题的序号为①⑤(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数$y=\frac{{\sqrt{x+1}}}{lg(2-x)}$的定义域是(  )
A.[-1,2)B.(1,2)C.[-1,1)∪(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足a1=9,其前n项和为Sn,对n∈N*,n≥2,都有Sn=3(Sn-1+3)
(Ⅰ)求数列{an}的通项公式;  
(Ⅱ)求证:数列{Sn+$\frac{9}{2}$}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lg(x2-mx-m).
(1)若m=1,求函数f(x)的定义域;
(2)若f(x)在(1,+∞)上是增函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知命题p:f(x)=$\sqrt{1-a•{3}^{x}}$在x∈(-∞,0]上有意义,命题q:函数 y=lg(ax2-x+a ) 的定义域为R.若p∨q为真,p∧q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知△ABC的面积为$\sqrt{3}$且b=2,c=2,则∠A等于(  )
A.30°B.30°或150°C.60°D.60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=$\frac{{x}^{2}}{{3}^{x}-1}$的图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案