【题目】已知函数y=Asin(ωx+φ)(A>0,ω>0)的图象过点P ,图象与P点最近的一个最高点坐标为 .
(1)求函数解析式;
(2)求函数的最大值,并写出相应的x的值;
(3)求使y≤0时,x的取值范围.
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心是坐标原点,焦点在轴上,离心率为,又椭圆上任一点到两焦点的距离和为.过右焦点与轴不垂直的直线交椭圆于,两点.
(1)求椭圆的方程;
(2)在线段上是否存在点,使得?若存在,求出的取值范围;若不存在,请
说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,,).
(1)若的部分图像如图所示,求的解析式;
(2)在(1)的条件下,求最小正实数,使得函数的图象向左平移个单位后所对应的函数是偶函数;
(3)若在上是单调递增函数,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的参数方程为(为参数),以直角坐标系原点为极点,以轴正半轴为极轴,建立极坐标系.
(1)求曲线的极坐标方程,并说明其表示什么轨迹;
(2)若直线的极坐标方程为,求直线被曲线截得的弦长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱柱ABC-A1B1C1中,侧棱垂直于底面,AC=BC,点D是AB的中点.
(1)求证:BC1∥平面CA1D;(2)若底面ABC为边长为2的正三角形,BB1=求三棱锥B1-A1DC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:
X | 1 | 2 | 3 | 4 | 5 |
频率 | a | 0.2 | 0.45 | b | c |
(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a,b,c的值;
(2)在(1)的条件下,将等级系数为4的3件日用品记为,等级系数为5的2件日用品记为,现从, 这5件日用品中任取两件(假定每件日用品被取出的可能性相同),求这两件日用品的等级系数恰好相等的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某棋类游戏的规则如下:棋子的初始位置在起点处,玩家每掷出一枚骰子,朝上一面的点数即为向终点方向前进的格子数,(比如玩家一开始掷出的骰子点数为3,则走到炸弹所在位置),若踩到炸弹则返回起点重新开始,若达到终点则游戏结束.现在已知小明掷完三次骰子后游戏恰好结束,则所有不同的情况种数为__________.
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于无穷数列和函数,若,则称是数列的母函数.
(Ⅰ)定义在上的函数满足:对任意,都有,且;又数列满足.
(1)求证: 是数列的母函数;
(2)求数列的前项和.
(Ⅱ)已知是数列的母函数,且.若数列的前项和为,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂2万元设计了某款式的服装,根据经验,每生产1百套该款式服装的成本为1万元,每生产(百套)的销售额(单位:万元).
(1)若生产6百套此款服装,求该厂获得的利润;
(2)该厂至少生产多少套此款式服装才可以不亏本?
(3)试确定该厂生产多少套此款式服装可使利润最大,并求最大利润.(注:利润=销售额-成本,其中成本=设计费+生产成本)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com