精英家教网 > 高中数学 > 题目详情
求分别满足下列条件的直线方程.
(1)经过直线2x+y+2=0和3x+y+1=0的交点且与直线2x+3y+5=0平行;
(2)与直线l:3x+4y-12=0垂直且与坐标轴围成的三角形面积为6.
分析:(1)将2x+y+2=0和3x+y+1=0联立,求出交点,又可知直线斜率为-
2
3
,利用点斜式方程求出并化简即可.
(2)设所求直线方程为4x-3y+m=0,求出与坐标轴交点坐标,根据三角形面积为6,得出关于m的方程并求解,再得出所求直线方程.
解答:解:(1)将2x+y+2=0与3x+y+1=0联立方程组解得交点坐标为(1,-4).--(3分)
由所求直线与直线2x+3y+5=0平行,则所求直线斜率为-
2
3

所以方程为y+4=-
2
3
(x-1),
从而所求直线方程为2x+3y-10=0--------------(7分)
(2)根据垂直直线系方程,设所求直线方程为4x-3y+m=0,令y=0得到x =-
m
4
,令x=0得到y =
m
3
,--------(10分)
S=
1
2
| -
m
4
| |
m
3
| =
1
2
×
m2
12
=6
解得m=±12从而所求直线方程为4x-3y±12=0------------------------(14分)
(注:少一个方程扣两分)
点评:本题考查直线方程求解,平行直线系与垂直直线系.考查分析、计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两直线l1:ax-by+4=0,l2:(a-1)x+y+b=0.求分别满足下列条件的a,b的值.
(1)直线l1过点(-3,-1),并且直线l1与l2垂直;
(2)直线l1与直线l2平行,并且坐标原点到l1,l2的距离相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,求分别满足下列条件的三角形形状:
①B=60°,b2=ac;②b2tanA=a2tanB;
③sinC=
sinA+sinBcosA+cosB
;④(a2-b2)sin(A+B)=(a2+b2)sin(A-B).

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程x2-2ax+2+a=0有两个不相等的实根,求分别满足下列条件的a的取值范围.
(1)方程两根都大于1;
(2)方程一根大于1,另一根小于1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两直线l1:(m+3)x+2y=5-3m,l2:4x+(5+m)y=16,求分别满足下列条件的m值:
(1)l1与l2平行;     
(2)l1与l2垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.求分别满足下列条件的a的值.
(1)A∩B=A∪B;
(2)A∩B≠φ,且A∩C=φ.

查看答案和解析>>

同步练习册答案