精英家教网 > 高中数学 > 题目详情

【题目】函数,则下列结论错误的是( )

A. 是偶函数 B. 的值域是

C. 方程的解只有 D. 方程的解只有

【答案】C

【解析】

根据相关知识对给出的四个选项分别进行分析、判断后可得结论

对于A,为有理数时,有;当为无理数时,有所以函数为偶函数,所以A正确

对于B,由题意得函数的值域为所以B正确

对于C,为有理数则方程f(f(x))=f(1)=1=f(x)恒成立;若为无理数,则方程f(f(x))=f(0)=1≠f(x),此时无满足条件的x故方程f(f(x))=f(x)的解为任意有理数,所以C不正确

对于D,x为有理数则方程f(f(x))=f(1)=1,此时x=1;若x为无理数则方程f(f(x))=f(0)=1,此时无满足条件的x,故方程f(f(x))=x的解为x=1,所以D正确

故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,则满足f(f(a))=2fa的a的取值范围是(
A.[ ,1]
B.[0,1]
C.[ ,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解湖南各景点在大众中的熟知度,随机对15~65岁的人群抽样了n人,回答问题“湖南省有哪几个著名的旅游景点?”统计结果如下图表.

组号

分组

回答正确的人数

回答正确的人数
占本组的频率

第1组

[15,25)

a

0.5

第2组

[25,35)

18

x

第3组

[35,45)

b

0.9

第4组

[45,55)

9

0.36

第5组

[55,65]

3

y


(1)分别求出a,b,x,y的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?
(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设顶点在原点,焦点在轴上的拋物线过点,过作抛物线的动弦 ,并设它们的斜率分别为 .

(Ⅰ)求拋物线的方程;

(),求证:直线的斜率为定值,并求出其值;

III)若,求证:直线恒过定点,并求出其坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题方程表示双曲线命题不等式的解集是. 为假 为真的取值范围.

【答案】

【解析】试题分析:由命题方程表示双曲线,求出的取值范围,由命题不等式的解集是,求出的取值范围,由为假, 为真,得出一真一假,分两种情况即可得出的取值范围.

试题解析:

范围为

型】解答
束】
18

【题目】如图,设是圆上的动点轴上的投影 上一点.

1)当在圆上运动时求点的轨迹的方程

2)求过点且斜率为的直线被所截线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆的中心为原点,长轴在轴上,上顶点为,左,右焦点分别为,线段的中点分别为,且 是面积为4的直角三角形.

1)求该椭圆的离心率和标准方程;

2)过做直线交椭圆于两点,使,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线 的极坐标方程是 ,以极点为原点 ,极轴为 轴正半轴(两坐标系取相同的单位长度)的直角坐标系 中,曲线 的参数方程为: 为参数).
(1)求曲线 的直角坐标方程与曲线 的普通方程;
(2)将曲线 经过伸缩变换 后得到曲线 ,若 分别是曲线 和曲线 上的动点,求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品生产厂家生产一种产品,每生产这种产品 (百台),其总成本为万元,其中固定成本为42万元,且每生产1百台的生产成本为15万元总成本固定成本生产成本销售收入万元满足假定该产品产销平衡即生产的产品都能卖掉,根据上述条件,完成下列问题:

写出总利润函数的解析式利润销售收入总成本

要使工厂有盈利,求产量的范围;

工厂生产多少台产品时,可使盈利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,且x≤0时, f(x)=-x+1

(1)求f(0),f(2);

(2)求函数f(x)的解析式;

(3)若f(a-1)<3,求实数a的取值范围.

查看答案和解析>>

同步练习册答案