【题目】函数,则下列结论错误的是( )
A. 是偶函数 B. 的值域是
C. 方程的解只有 D. 方程的解只有
【答案】C
【解析】
根据相关知识对给出的四个选项分别进行分析、判断后可得结论.
对于A,当为有理数时,有;当为无理数时,有,所以函数为偶函数,所以A正确.
对于B,由题意得函数的值域为,所以B正确.
对于C,若为有理数,则方程f(f(x))=f(1)=1=f(x)恒成立;若为无理数,则方程f(f(x))=f(0)=1≠f(x),此时无满足条件的x,故方程f(f(x))=f(x)的解为任意有理数,所以C不正确.
对于D,若x为有理数,则方程f(f(x))=f(1)=1,此时x=1;若x为无理数,则方程f(f(x))=f(0)=1,此时无满足条件的x,故方程f(f(x))=x的解为x=1,所以D正确.
故选C.
科目:高中数学 来源: 题型:
【题目】为了了解湖南各景点在大众中的熟知度,随机对15~65岁的人群抽样了n人,回答问题“湖南省有哪几个著名的旅游景点?”统计结果如下图表.
组号 | 分组 | 回答正确的人数 | 回答正确的人数 |
第1组 | [15,25) | a | 0.5 |
第2组 | [25,35) | 18 | x |
第3组 | [35,45) | b | 0.9 |
第4组 | [45,55) | 9 | 0.36 |
第5组 | [55,65] | 3 | y |
(1)分别求出a,b,x,y的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?
(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设顶点在原点,焦点在轴上的拋物线过点,过作抛物线的动弦, ,并设它们的斜率分别为, .
(Ⅰ)求拋物线的方程;
(Ⅱ)若,求证:直线的斜率为定值,并求出其值;
(III)若,求证:直线恒过定点,并求出其坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】命题方程表示双曲线;命题不等式的解集是. 为假, 为真,求的取值范围.
【答案】
【解析】试题分析:由命题方程表示双曲线,求出的取值范围,由命题不等式的解集是,求出的取值范围,由为假, 为真,得出一真一假,分两种情况即可得出的取值范围.
试题解析:
真
,
真 或
∴
真假
假真
∴范围为
【题型】解答题
【结束】
18
【题目】如图,设是圆上的动点,点是在轴上的投影, 为上一点,且.
(1)当在圆上运动时,求点的轨迹的方程;
(2)求过点且斜率为的直线被所截线段的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设椭圆的中心为原点,长轴在轴上,上顶点为,左,右焦点分别为,线段的中点分别为,且 是面积为4的直角三角形.
(1)求该椭圆的离心率和标准方程;
(2)过做直线交椭圆于两点,使,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线 的极坐标方程是 ,以极点为原点 ,极轴为 轴正半轴(两坐标系取相同的单位长度)的直角坐标系 中,曲线 的参数方程为: ( 为参数).
(1)求曲线 的直角坐标方程与曲线 的普通方程;
(2)将曲线 经过伸缩变换 后得到曲线 ,若 分别是曲线 和曲线 上的动点,求 的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某产品生产厂家生产一种产品,每生产这种产品 (百台),其总成本为万元,其中固定成本为42万元,且每生产1百台的生产成本为15万元总成本固定成本生产成本销售收入万元满足,假定该产品产销平衡即生产的产品都能卖掉,根据上述条件,完成下列问题:
写出总利润函数的解析式利润销售收入总成本;
要使工厂有盈利,求产量的范围;
工厂生产多少台产品时,可使盈利最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的偶函数,且x≤0时, f(x)=-x+1
(1)求f(0),f(2);
(2)求函数f(x)的解析式;
(3)若f(a-1)<3,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com