精英家教网 > 高中数学 > 题目详情

【题目】(本题满分15分)如图,已知四棱锥PABCDPAD是以AD为斜边的等腰直角三角形,BCADCDADPC=AD=2DC=2CBEPD的中点.

)证明:CE平面PAB

)求直线CE与平面PBC所成角的正弦值.

【答案】见解析;.

【解析】本题主要考查空间点、线、面位置关系,直线与平面学科&网所成的角等基础知识,同时考查空间想象能力和运算求解能力。满分15分。

)如图,设PA中点为F,连结EFFB.

因为EF分别为PDPA中点,所以EFAD

又因为BCAD,所以

EFBCEF=BC

即四边形BCEF为平行四边形,所以CEBF

因此CE平面PAB.

)分别取BCAD的中点为MN.连结PNEF于点Q,连结MQ.

因为EFN分别是PDPAAD的中点,所以QEF中点,

在平行四边形BCEF中,MQCE.

PAD为等腰直角三角形得

PNAD.

DCADNAD的中点得

BNAD.

所以 AD平面PBN

BCADBC平面PBN

那么,平面PBC平面PBN.

过点QPB的垂线,垂足为H,连结MH.

MHMQ在平面PBC上的射影,所以QMH是直线CE与平面PBC所成的角.

CD=1.

PCD中,由PC=2CD=1PD=CE=

PBN中,由PN=BN=1PB=QH=

RtMQH中,QH=MQ=

所以sinQMH=

所以,直线CE与平面PBC所成角的正弦值是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=x2+ax+3.
(1)当x∈R时,f(x)≥a恒成立,求a的取值范围.
(2)当x∈[﹣2,2]时,f(x)≥a恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2 sinxcosx+2cos2x﹣1(x∈R) (Ⅰ)求函数f(x)的最小正周期及在区间[0, ]上的最大值和最小值;
(Ⅱ)若f(x0)= ,x0∈[ ],求cos2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=x2﹣ax+a(x∈R)同时满足:
①不等式f(x)≤0的解集有且只有一个元素;
②在定义域内存在0<x1<x2 , 使得不等式f(x1)>f(x2)成立.设数列{an}的前n项和Sn=f(n).
(1)求f(x)的表达式;
(2)求数列{an}的通项公式;
(3)设 ,cn= ,{cn}的前n项和为Tn , 若Tn>2n+t对任意n∈N,n≥2恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系内,设M(x1 , y1)、N(x2 , y2)为不同的两点,直线l的方程为ax+by+c=0,设 .有下列四个说法:
①存在实数δ,使点N在直线l上;
②若δ=1,则过M、N两点的直线与直线l平行;
③若δ=﹣1,则直线l经过线段MN的中点;
④若δ>1,则点M、N在直线l的同侧,且直线l与线段MN的延长线相交.
上述说法中,所有正确说法的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)与直线x+y﹣1=0相交于A、B两点,若a∈[ ],且以AB为直径的圆经过坐标原点O,则椭圆离心率e的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题: ①函数f(x)=x+ 的最小值为6;
②不等式 <1的解集是{x|﹣1<x<1};
③若a>b>﹣1,则
④若a>b,c>d,则ac>bd.
所有正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题一定正确的是(
A.在等差数列{an}中,若ap+aq=ar+aδ , 则p+q=r+δ
B.已知数列{an}的前n项和为Sn , 若{an}是等比数列,则Sk , S2k﹣Sk , S3k﹣S2k也是等比数列
C.在数列{an}中,若ap+aq=2ar , 则ap , ar , aq成等差数列
D.在数列{an}中,若ap?aq=a ,则ap , ar , aq成等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若△ABC的内角A,B,C所对的边分别为a,b,c,且满足asinB﹣ bcosA=0
(1)求A;
(2)当a= ,b=2时,求△ABC的面积.

查看答案和解析>>

同步练习册答案