精英家教网 > 高中数学 > 题目详情

如图,圆

(Ⅰ)若圆轴相切,求圆的方程;
(Ⅱ)已知,圆C与轴相交于两点(点在点的左侧).过点任作一条直线与圆相交于两点.问:是否存在实数,使得?若存在,求出实数的值,若不存在,请说明理由.

(Ⅰ);(Ⅱ)存在,使得.

解析试题分析:(Ⅰ)由圆轴相切,可知圆心的纵坐标的绝对值与半径相等.故先将圆的方程化成标准方程为:,由求得.即可得到所求圆的方程为:;(Ⅱ)先解出两点的坐标,要使得,则可以得到:,若设,那么有:,结合直线与圆的方程去探讨可得存在,使得.
试题解析:(Ⅰ)圆化成标准方程为:

若圆轴相切,那么有:
,解得,故所求圆的方程为:.
(Ⅱ)令,得

所以
假设存在实数
当直线AB与轴不垂直时,设直线AB的方程为
代入得,
从而
因为



因为,所以,即,得
当直线AB与轴垂直时,也成立.
故存在,使得
考点:直线与圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知直线lyxmm∈R.
(1)若以点M(2,0)为圆心的圆与直线l相切于点P,且点Py轴上,求该圆的方程;
(2)若直线l关于x轴对称的直线为l′,问直线l′与抛物线Cx2=4y是否相切?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的三个顶点,其外接圆为
(1)若直线过点,且被截得的弦长为2,求直线的方程;
(2)对于线段上的任意一点,若在以为圆心的圆上都存在不同的两点,使得点是线段的中点,求的半径的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆.(14分)
(1)此方程表示圆,求m的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且(O为坐标原点),求m的值;
(3)在(2)的条件下,求以为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆经过两点,且在两坐标轴上的四个截距之和为2.
(1)求圆的方程;
(2)若为圆内一点,求经过点被圆截得的弦长最短时的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有一圆与直线l:4x-3y+6=0相切于点A(3,6),且经过点B(5,2),求此圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,点,直线。设圆的半径为,圆心在上。

(1)若圆心也在直线上,过点作圆的切线,求切线的方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围。.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以点C (t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2x+y-4=0与圆C交于点M、N,若OM=ON,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)若圆与圆相交,求实数m的取值范围;
(2)求圆被直线截得的弦长.

查看答案和解析>>

同步练习册答案