精英家教网 > 高中数学 > 题目详情

【题目】已知等比数列{an}的前n项和为Sn=a2n+b,且a1=3.
(1)求a、b的值及数列{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn

【答案】
(1)解:∵等比数列{an}的前n项和为Sn=a2n+b,且a1=3.

∴a1=2a+b=3,a2=4a+b﹣(2a+b)=2a,a3=(8a+b)﹣(4a+b)=4a,

∴公比q= =2.

∴a=3,b=﹣3.

∴an=32n﹣1


(2)bn= =

Tn= (1+ + +…+ )①

Tn= + +…+ + )②

①﹣②得: Tn= (1+ + +…+ )= [ ]

= (2﹣ )= (1﹣ ),

∴Tn= (1﹣ ).


【解析】(1)由等比数列{an}的前n项和为Sn=a2n+b可分别求出a1,a2,a3。因为它们的公比相同即可求出a和b的值。
(2)由(1)问可知bn代入Tn,用错位相减法即可求出。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知一个四棱锥的正视图和侧视图为两个完全相同的等腰直角三角形(如图示),腰长为1,则该四棱锥的体积为( )

(A) (B) (C) (D)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,设当箭头a指向①处时,输出的S的值为m,当箭头a指向②处时,输出的S的值为n,则m+n=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角的对边分别为,且成等差数列

1)若,求的面积

2)若成等比数列,试判断的形状

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆 (a>b>0)与直线x+y=1交于P、Q两点,且OP⊥OQ,其中O为坐标原点.
(1)求 的值;
(2)若椭圆的离心率e满足 ≤e≤ ,求椭圆长轴的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的方程:x2+y2﹣2x﹣4y+m=0,其中m<5.
(1)若圆C与直线l:x+2y﹣4=0相交于M,N两点,且|MN|= ,求m的值;
(2)在(1)条件下,是否存在直线l:x﹣2y+c=0,使得圆上有四点到直线l的距离为 ,若存在,求出c的范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的两条相邻对称轴间的距离为 ,把f(x)的图象向右平移 个单位得到函数g(x)的图象,且g(x)为偶函数,则f(x)的单调递增区间为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某服装超市举办了一次有奖促销活动,顾客消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种. 方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性抽出3个小球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸到2个红球则打6折,若摸到1个红球,则打7折;若没有摸到红球,则不打折;
方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回的摸取,连续3次,每摸到1个红球,立减200元.
(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;
(2)若某顾客消费恰好满1000元,则该顾客选择哪种抽奖方案更合适?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面α过正方体ABCD﹣A1B1C1D1的面对角线 ,且平面α⊥平面C1BD,平面α∩平面ADD1A1=AS,则∠A1AS的正切值为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案