精英家教网 > 高中数学 > 题目详情
已知函数f(x)=acos2x-bsinxcosx-
a
2
的最大值为
1
2
,且f(
π
3
)=
3
4
,则f(-
π
3
)
=(  )
分析:运用三角函数的恒等变换化简f(x)的解析式为 
a
2
•cos2x
-
1
2
b•sin2x
,由最大值为
1
2
,求出a2+b2=1 ①.再由f(
π
3
)=
3
4
可得a+
3
b=-
3
②,由①②求出a、b的值,
进而求得 f(-
π
3
)
 的值.
解答:解:∵函数f(x)=acos2x-bsinxcosx-
a
2
=a•
1+cos2x
2
-
1
2
b•sin2x
-
a
2
=
a
2
•cos2x
-
1
2
b•sin2x

它的最大值为
1
2
a2+b2
=
1
2
,故有a2+b2=1 ①.
再由f(
π
3
)=
3
4
 可得-
1
4
a-
3
4
b
=
3
4
,即 a+
3
b=-
3
 ②.
由①②解得
a=0
b=-1
,或 
a= -
3
2
b= -
1
2

f(-
π
3
)
=-
1
4
a+
3
4
b
=-
3
4
,或 f(-
π
3
)
=-
1
4
a+
3
4
b
=0.
故选D.
点评:本题主要考查三角函数的恒等变换及化简求值,正弦函数的定义域和值域,体现了分类讨论的数学思想,是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案