精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,求的最小值;

(2)若上为单调函数,求实数的取值范围.

【答案】12.

【解析】试题分析:

1根据导函数的符号判断函数的单调性,并根据单调性求极值进而可得最值。(2将问题转化为导函数在大于等于0或小于等于0解决,分离参数后转化为求函数的最值问题。

试题解析:

(1)当时,

(舍去

变化时 的变化情况如下表:

2

-

0

+

极小值

由上表可得当时,

时,函数的最小值为

2

上为单调函数,

时, 恒成立,

恒成立,

恒成立.

,则

时, 单调递减,

又当 时, ;当时,

故当上为单调函数时,实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若函数上的最大值为1,求实数的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的左、右焦点分别为离心率为,两准线之间的距离为8,在椭圆上,且位于第一象限,过点作直线的垂线,过点作直线的垂线

(1)求椭圆的标准方程;

(2)若直线的交点在椭圆求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与直线相切.

(1)若直线与圆交于两点,求

(2)设圆轴的负半轴的交点为,过点作两条斜率分别为的直线交圆两点,且,试证明直线恒过一定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的参数方程为为参数),直线的参数方程为为参数).

(1)若直线与圆相交于 两点,求弦长

(2)以该直角坐标系的原点为极点, 轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,圆和圆的交点为 ,求弦所在直线的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.

学生序号

1

2

3

4

5

6

7

8

9

10

立定跳远(单位:米)

1.96

1.92

1.82

1.80

1.78

1.76

1.74

1.72

1.68

1.60

30秒跳绳(单位:次)

63

a

75

60

63

72

70

a1

b

65

在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则

A2号学生进入30秒跳绳决赛

B5号学生进入30秒跳绳决赛

C8号学生进入30秒跳绳决赛

D9号学生进入30秒跳绳决赛

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为圆的圆心, 是圆上的动点,点在圆的半径上,且有点上的点,满足.

1)当点在圆上运动时,求点的轨迹方程;

2)若斜率为的直线与圆相切,直线与(1)中所求点的轨迹交于不同的两点是坐标原点,且时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=axlnx﹣x+l (aR),且f(x)0.

(I)求a;

II)求证:当,nN*时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016·武昌调研)如图,在圆内画1条线段,将圆分成2部分;画2条相交线段,将圆分割成4部分;画3条线段,将圆最多分割成7部分;画4条线段,将圆最多分割成11部分.则

(1)在圆内画5条线段,将圆最多分割成________部分;

(2)在圆内画n条线段,将圆最多分割成________部分.

查看答案和解析>>

同步练习册答案