精英家教网 > 高中数学 > 题目详情
已知半径为5的圆C的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y-29=0相切.
(1)求圆C的方程;
(2)设直线ax-y+5=0与圆C相交于A、B两点,求实数a的取值范围.
分析:(1)设圆心M的坐标为(m,0),且m是整数,由圆C与已知直线垂直,得到圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关于m的方程,求出方程的解得到m的值,进而确定出圆C的方程;
(2)由直线ax-y+5=0,表示出y,代入圆的方程消去y,得到关于x的一元二次方程,根据直线与圆有两个交点,得到根的判别式大于0,列出关于a的不等式,求出不等式的解集即可得到a的取值范围.
解答:解:(1)设圆心为M(m,0)(m∈Z),
∵圆C与直线4x+3y-29=0相切,且半径为5,
∴圆心,到直线4x+3y-29=0的距离d=r,即
|4m-29|
5
=5,即|4m-29|=25,
∵m为整数,∴m=1,
则所求圆的方程为(x-1)2+y2=25;
(2)直线ax-y+5=0即y=ax+5,代入圆的方程,消去y整理得:
(a2+1)x2+2(5a-1)x+1=0,
∵直线ax-y+5=0交圆于A,B两点,
∴△=4(5a-1)2-4(a2+1)>0,即12a2-5a>0,
解得:a<0或a>
5
12

则实数a的取值范围是(-∞,0)∪(
5
12
,+∞).
点评:此题考查了直线与圆相交的性质,以及直线与圆的位置关系,涉及的知识有:点到直线的距离公式,一元二次方程根的判别式与解的关系,一元二次不等式的解法,解题的关键是:当直线与圆相切时,圆心到直线的距离等于圆的半径;将直线与圆的方程联立消去y后,得到关于x的一元二次方程,此一元二次方程的解的个数决定了直线与圆交点的个数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知半径为5的圆C的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y-29=0相切.
(1)求圆C的方程;
(2)设直线ax-y+5=0与圆C相交于A,B两点,求实数a的取值范围;
(3)在(2)的条件下,是否存在实数a,使得过点P(-2,4)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知半径为5的圆C的圆心在x轴上,且与直线4x+3y-29=0相切,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知半径为5的圆C的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y-29=0相切.
(1)求圆C的方程;
(2)设直线ax-y+5=0与圆C相交于A,B两点,求实数a的取值范围;
(3)在(2)的条件下,是否存在实数a,使得过点P(-2,4)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河南省郑州三中高一(下)期末数学试卷(解析版) 题型:解答题

已知半径为5的圆C的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y-29=0相切.
(1)求圆C的方程;
(2)设直线ax-y+5=0与圆C相交于A、B两点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案