精英家教网 > 高中数学 > 题目详情
已知直角梯形边上的中点(如图甲),,将沿折到的位置,使,点上,且(如图乙)

(Ⅰ)求证:平面ABCD.
(Ⅱ)求二面角E?AC?D的余弦值
(Ⅰ)见详解;(Ⅱ)

试题分析:先证,且平面ABCD;根据几何法或向量法求出二面角E?AC?D的余弦值.
试题解析:
(Ⅰ)证明:在题图中,由题意可知,
,ABCD为正方形,所以在图中,
四边形ABCD是边长为2的正方形,
因为,且
所以平面SAB,               (3分)
平面SAB,所以,且
所以平面ABCD.                 (6分)
(Ⅱ)解:方法一: 如图,在AD上取一点O,使,连接EO.

因为,所以EO//SA ,                  (7分)
所以平面ABCD,过O作于H,连接EH,
平面EOH,所以
所以为二面角E?AC?D的平面角,           (9分)
. 在Rt△AHO中,
.            (11分)
所以二面角E?AC?D的余弦值为.              (12分)
方法二:以A为原点建立空间直角坐标系,如图,


,            (7分)
易知平面ACD的法向量为
设平面EAC的法向量为
,                (9分)
 所以 可取 
所以,                    (11分)
所以
所以二面角E?AC?D的余弦值为.              (12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠PAD=90°,侧面PAD⊥底面ABCD,若PA=AB=BC=,AD=1.

(I)求证:CD⊥平面PAC;
(II)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面平面是正方形,,且分别是线段的中点.

(1)求证:平面
(2)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,侧面是等边三角形,在底面等腰梯形中,的中点,的中点,.

(1)求证:平面平面
(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知斜三棱柱的底面是直角三角形, ,侧棱与底面所成角为,点在底面上的射影落在上.

(1)求证:平面
(2)若,且当时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PA丄平面ABCD,==90°=1200,AD=AB=1,AC交BD于 O 点.
(I)求证:平面PBD丄平面PAC;
(Ⅱ)求三棱锥D-ABP和三棱锥B-PCD的体积之比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,将边长为5+的正方形,剪去阴影部分后,得到圆锥的侧面和底面的展开图,则圆锥的体积是(   ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个棱长为6的正四面体纸盒内放一个正方体,若正方体可以在纸盒内任意转动,则正方体棱长的最大值为(     )
A.2B.3 C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,菱形的边长为6,,.将菱形沿对角线折起,得到三棱锥 ,点是棱的中点,.

(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

同步练习册答案