精英家教网 > 高中数学 > 题目详情

为数列的前项和,且有
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列是单调递增数列,求的取值范围.

(Ⅰ);(Ⅱ).

解析试题分析:(Ⅰ)先利用得到数列的递推公式,然后由递推公式得出数列分别是以为首项,6为公差的等差数列,再用等差数列的通项公式得到分别为奇数和偶数时的递推公式,再合并即为所求;(Ⅱ)数列是单调递增数列对任意的成立.然后将第(Ⅰ)问得到的通项公式代入,通过解不等式即可得到的取值范围是
试题解析:(Ⅰ)当时,由已知                  ①
于是                                 ②
由②-①得                            ③
于是                                ④
由④-③得                                ⑤
上式表明:数列分别是以为首项,6为公差的等差数列.     4分
又由①有,所以,
由③有,所以
所以
.
.
.
 .                   8分
(Ⅱ)数列是单调递增数列对任意的成立.


所以的取值范围是                                            13分
考点:1.数列的递推公式;2.等差数列的通项公式;3.不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设数列{an}满足an+1=2an+n2-4n+1.
(1)若a1=3,求证:存在(a,b,c为常数),使数列{an+f(n)}是等比数列,并求出数列{an}的通项公式;
(2)若an是一个等差数列{bn}的前n项和,求首项a1的值与数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的前项和为,且.
(Ⅰ)求
(Ⅱ)若,求的值和的表达式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前项和为,且.
(1)证明:数列是等比数列;
(2)若数列满足,求数列的前项和为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的通项公式为,在等差数列数列中,,且,又成等比数列.
(1)求数列的通项公式;
(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的首项,且满足
(1)设,求证:数列是等差数列,并求数列的通项公式;
(2)设,求数列的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列{an}中,a1=1,当时,其前n项和满足.
(Ⅰ)求Sn的表达式;
(Ⅱ)设,数列{bn}的前n项和为,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的各项都是正数,且对任意,都有,其中 为数列的前项和。
(1)求证数列是等差数列;
(2)若数列的前项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列是等差数列,且
(1)求数列的通项公式
(2)令,求数列前n项和

查看答案和解析>>

同步练习册答案