(14分) 定义:若函数对于其定义域内的某一数,有,则称是的一个不动点. 已知函数.
(1)当,时,求函数的不动点;
(2)若对任意的实数b,函数恒有两个不动点,求a的取值范围;
(3)在(2)的条件下,若图象上两个点A、B的横坐标是函数的不动点,且A、B的中点C在函数的图象上,求b的最小值.
(参考公式:的中点坐标为)
科目:高中数学 来源: 题型:
(本题满分14分)定义:对于函数,.若对定义域内的恒成立,则称函数为函数.(1)请举出一个定义域为的函数,并说明理由;(2)对于定义域为的函数,求证:对于定义域内的任意正数,均有;
(3)对于值域的函数,求证:.
查看答案和解析>>
科目:高中数学 来源:2011年新课标高三上学期单元测试(1)理科数学卷 题型:解答题
(本题14分)设定义在R上的函数,对任意有, 且当 时,恒有,若.
(1)求;
(2)求证: 时为单调递增函数.
(3)解不等式.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省宁波市高三高考理数模拟试题 题型:解答题
(本小题满分14分)
函数定义在区间[a, b]上,设“”表示函数在集合D上的最小值,“”表示函数在集合D上的最大值.现设,
,
若存在最小正整数k,使得对任意的成立,则称函数
为区间上的“第k类压缩函数”.
(Ⅰ) 若函数,求的最大值,写出的解析式;
(Ⅱ) 若,函数是上的“第3类压缩函数”,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010年广东省高三上学期期中考试文科数学卷 题型:解答题
(本小题满分14分)
设数列的通项公式为. 数列定义如下:对于正整数m,是使得不等式成立的所有n中的最小值.
(Ⅰ)若,求;
(Ⅱ)若,求数列的前2m项和公式;
(Ⅲ)是否存在p和q,使得?如果存在,求p和q的取值范围;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com