精英家教网 > 高中数学 > 题目详情

【题目】如图1所示,在中, 的平分线,点在线段上, .如图2所示,将沿折起,使得平面平面,连结,设点的中点.

图1 图2

(1)求证: 平面

(2)在图2中,若平面,其中为直线与平面的交点,求三棱锥的体积.

【答案】(1)证明见解析;(2).

【解析】试题分析:(1)的中点,连接,证明利用平面与平面垂直的性质证明平面;(2)过点交于点,因为平面平面 平面,所以平面,求得利用棱锥的体积公式,即可求三棱锥的体积.

试题解析:(1)在题图1中,因为 ,所以

因为的平分线,所以

所以

又因为 ,所以

,所以,即

在题图2中,因为平面平面,平面平面 平面

所以平面

(2)在题图2中,因为平面 平面,平面平面

所以

因为点在线段上, ,点的中点,所以

过点交于点

因为平面平面 平面,所以平面

由条件得

所以三棱锥的体积为

【方法点晴】本题主要考查线面垂直的判定定理及面面垂直的性质、棱锥的体积公式,属于难题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为椭圆)的左、右焦点,点为椭圆上一点,且

(1)求椭圆的标准方程;

(2)若圆是以为直径的圆,直线与圆相切,并与椭圆交于不同的两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实数满足约束条件,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆过两点 且圆心在直线

(Ⅰ)求圆的标准方程;

(Ⅱ)直线过点且与圆有两个不同的交点 ,若直线的斜率大于0,求的取值范围;

(Ⅲ)在(Ⅱ)的条件下,是否存在直线使得弦的垂直平分线过点,若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点的直线与圆相切,且与直线垂直,则( )

A. 2 B. 1 C. D.

【答案】A

【解析】因为点P(2,2)满足圆的方程,所以P在圆上,

又过点P(2,2)的直线与圆相切,且与直线axy+1=0垂直,

所以切点与圆心连线与直线axy+1=0平行,

所以直线axy+1=0的斜率为: .

故选A.

点睛:对于直线和圆的位置关系的问题,可用“代数法”或“几何法”求解,直线与圆的位置关系体现了圆的几何性质和代数方法的结合,“代数法”与“几何法”是从不同的方面和思路来判断的,解题时不要单纯依靠代数计算,若选用几何法可使得解题过程既简单又不容易出错.

型】单选题
束】
23

【题目】分别是双曲线的左、右焦点.若点在双曲线上,且,则 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两圆 的圆心分别为c1,c2,,P为一个动点,且.

(1)求动点P的轨迹方程;

(2)是否存在过点A(2,0)的直线l与轨迹M交于不同的两点C,D,使得C1C=C1D?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校射击队的某一选手射击一次,其命中环数的概率如表:

命中环数

10环

9环

8环

7环

概率

0.32

0.28

0.18

0.12

求该选手射击一次,

(1)命中9环或10环的概率.

(2)至少命中8环的概率.

(3)命中不足8环的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为圆的圆心, 是圆上动点,点在圆的半径上,且有点上的点,满足

(1)当在圆上运动时,求点的轨迹方程;

(2)若斜率为的直线与圆相切,与(1)中所求点的轨迹教育不同的两点 是坐标原点,且时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015年12月,华中地区数城市空气污染指数“爆表”,此轮污染为2015年以来最严重的污染过程,为了探究车流量与的浓度是否相关,现采集到华中某城市2015年12月份某星期星期一到星期日某一时间段车流量与的数据如表:

(1)由散点图知具有线性相关关系,求关于的线性回归方程;(提示数据:

(2)利用(1)所求的回归方程,预测该市车流量为12万辆时的浓度.

参考公式:回归直线的方程是,其中 .

查看答案和解析>>

同步练习册答案