【题目】如图1所示,在中, , , , 为的平分线,点在线段上, .如图2所示,将沿折起,使得平面平面,连结,设点是的中点.
图1 图2
(1)求证: 平面;
(2)在图2中,若平面,其中为直线与平面的交点,求三棱锥的体积.
【答案】(1)证明见解析;(2).
【解析】试题分析:(1)取的中点,连接,证明,利用平面与平面垂直的性质证明平面;(2)过点作交于点,因为平面平面, 平面,所以平面,求得,利用棱锥的体积公式,即可求三棱锥的体积.
试题解析:(1)在题图1中,因为, , ,所以.
因为为的平分线,所以,
所以.
又因为, ,所以
则,所以,即
在题图2中,因为平面平面,平面平面, 平面,
所以平面.
(2)在题图2中,因为平面, 平面,平面平面,
所以
因为点在线段上, ,点是的中点,所以
过点作交于点
因为平面平面, 平面,所以平面
由条件得
又 ,
所以三棱锥的体积为 .
【方法点晴】本题主要考查线面垂直的判定定理及面面垂直的性质、棱锥的体积公式,属于难题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.
科目:高中数学 来源: 题型:
【题目】已知、为椭圆: ()的左、右焦点,点为椭圆上一点,且.
(1)求椭圆的标准方程;
(2)若圆是以为直径的圆,直线: 与圆相切,并与椭圆交于不同的两点、,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆过两点, ,且圆心在直线上.
(Ⅰ)求圆的标准方程;
(Ⅱ)直线过点且与圆有两个不同的交点, ,若直线的斜率大于0,求的取值范围;
(Ⅲ)在(Ⅱ)的条件下,是否存在直线使得弦的垂直平分线过点,若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点的直线与圆相切,且与直线垂直,则( )
A. 2 B. 1 C. D.
【答案】A
【解析】因为点P(2,2)满足圆的方程,所以P在圆上,
又过点P(2,2)的直线与圆相切,且与直线axy+1=0垂直,
所以切点与圆心连线与直线axy+1=0平行,
所以直线axy+1=0的斜率为: .
故选A.
点睛:对于直线和圆的位置关系的问题,可用“代数法”或“几何法”求解,直线与圆的位置关系体现了圆的几何性质和代数方法的结合,“代数法”与“几何法”是从不同的方面和思路来判断的,解题时不要单纯依靠代数计算,若选用几何法可使得解题过程既简单又不容易出错.
【题型】单选题
【结束】
23
【题目】设分别是双曲线的左、右焦点.若点在双曲线上,且,则 ( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两圆, 的圆心分别为c1,c2,,P为一个动点,且.
(1)求动点P的轨迹方程;
(2)是否存在过点A(2,0)的直线l与轨迹M交于不同的两点C,D,使得C1C=C1D?若存在,求出直线l的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校射击队的某一选手射击一次,其命中环数的概率如表:
命中环数 | 10环 | 9环 | 8环 | 7环 |
概率 | 0.32 | 0.28 | 0.18 | 0.12 |
求该选手射击一次,
(1)命中9环或10环的概率.
(2)至少命中8环的概率.
(3)命中不足8环的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点为圆的圆心, 是圆上动点,点在圆的半径上,且有点和上的点,满足
(1)当在圆上运动时,求点的轨迹方程;
(2)若斜率为的直线与圆相切,与(1)中所求点的轨迹教育不同的两点 是坐标原点,且时,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2015年12月,华中地区数城市空气污染指数“爆表”,此轮污染为2015年以来最严重的污染过程,为了探究车流量与的浓度是否相关,现采集到华中某城市2015年12月份某星期星期一到星期日某一时间段车流量与的数据如表:
(1)由散点图知与具有线性相关关系,求关于的线性回归方程;(提示数据: )
(2)利用(1)所求的回归方程,预测该市车流量为12万辆时的浓度.
参考公式:回归直线的方程是,其中, .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com