精英家教网 > 高中数学 > 题目详情
20.如图,直线AB∥CD∥EF,若AC=3,CE=4,则$\frac{BD}{BF}$的值是(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{3}{7}$D.$\frac{4}{7}$

分析 直接利用平行线分线段成比例定理求解.

解答 解:∵直线AB∥CD∥EF,
∴$\frac{BD}{BF}$=$\frac{AC}{AE}$=$\frac{3}{3+4}$=$\frac{3}{7}$.
故选:C.

点评 本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设命题p:$\frac{2x}{x-1}$<1,命题q:x2-(2a+1)x+a(a+1)<0,若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.给出下列命题:
①${log_{0.5}}3<{2^{\frac{1}{3}}}<{(\frac{1}{3})^{0.2}}$; 
②函数f(x)=lgx-sinx有3个零点;
③函数f(x)=ln$\frac{x+1}{x-1}$+$\frac{x}{12}$的图象以原点为对称中心;
④已知a、b、m、n、x、y均为正数,且a≠b,若a、m、b、x成等差数列,a、n、b、y成等比数列,则有m>n,x<y.
其中正确命题的个数是(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=acosφ}\\{y=bsinφ}\end{array}\right.$(a>b>0,φ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点M($\sqrt{3}$,$\frac{1}{2}$)对应的参数φ=$\frac{π}{6}$,射线θ=$\frac{π}{3}$与曲线C2交于点D(1,$\frac{π}{3}$).
(1)求曲线C1,C2的直角坐标系方程;
(2)若点A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}$)都在曲线C1上,求$\frac{1}{{{ρ}_{1}}^{2}}$+$\frac{1}{{{ρ}_{2}}^{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=ax2+(b-1)x+1(a>0)的两个零点为x1,x2
(1)若x1<2<x2<4,求证:2a>b;
(2)若|x1|<2,|x1-x2|=2,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数f(x)=-2x3+ax2+1存在唯一的零点,则实数a的取值范围为(  )
A.[0,+∞)B.[0,3]C.(-3,0]D.(-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=sin2x+$\sqrt{3}$sinxcosx-$\frac{1}{2}$的图象关于直线x=φ(φ|≤$\frac{π}{2}$)对称,则φ的值为(  )
A.$\frac{π}{6}$B.-$\frac{π}{6}$C.-$\frac{π}{6}$或$\frac{π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|x<3},B={x|-1<x≤0},则A∩(∁RB)等于(  )
A.{x|0≤x<3}B.{x|x≤-1或0<x<3}C.{x|-1<x<3}D.{x|x<-1或x>3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知y=f(x)为定义在R上的奇函数.
(1)若y=f(x)在(0,+∞)上为减函数,判断(-∞,0)上的单调性并证明;
(2)若x>0时,f(x)=x2+sinx+1,求f(x)的解析式.

查看答案和解析>>

同步练习册答案