精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆),过原点的两条直线分别与交于点,得到平行四边形.

1)若,且为正方形,求该正方形的面积.

2)若直线的方程为关于轴对称,上任意一点的距离分别为,证明:.

3)当为菱形,且圆内切于菱形时,求满足的关系式.

【答案】(1)(2)证明见解析(3)

【解析】

1)由题意,直线的方程为,利用 ,可得 ,根据对称性,求出正方形的面积;

2)利用距离公式,结合为定值,即可证明结论;

3)设出切线的方程与椭圆方程联立,分类讨论,即可求满足的关系式.

[]1)因为为正方形,所以直线的方程为.

的坐标为方程组的实数解,

代入椭圆方程,解得.

根据对称性,可得正方形的面积.

[证明]2)由题设,直线的方程为

于是.

[]3)设与圆相切的切点坐标为,于是切线的方程为.

的坐标为方程组的实数解.

①当时,均为正方形,椭圆均过点,于是有.

②当时,将代入

整理得,于是

同理可得.

因为为菱形,所以,得,即

于是,整理得,由

,即.

综上,满足的关系式为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面是等边三角形,且平面平面的中点,

1)求证:平面

2)求二面角的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,为正三角形,且.

(1)证明:直线平面

(2)若四棱锥的体积为是线段的中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点上,以为切点的的切线的斜率为,过外一点(不在轴上)作的切线,点为切点,作平行于的切线(切点为),点分别是与的交点(如图):

1)用的纵坐标表示直线的斜率;

2)若直线的交点为,证明的中点;

3)设三角形面积为,若将由过外一点的两条切线及第三条切线(平行于两切线切点的连线)围成的三角形叫做切线三角形,如,再由切线三角形,并依这样的方法不断作切线三角形……,试利用切线三角形的面积和计算由抛物线及所围成的阴影部分的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中, 分别是的中点.

(1)求证:四边形是菱形;

(2)求异面直线所成角的大小 (结果用反三角函数值表示) .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,底面为等腰梯形,.平面平面,四边形为菱形,.

1)求证:

2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20191018-27日,第七届世界军人运动会在湖北武汉举办,中国代表团共获得1336442铜,共239枚奖牌.为了调查各国参赛人员对主办方的满意程度,研究人员随机抽取了500名参赛运动员进行调查,所得数据如下所示,现有如下说法:①在参与调查的500名运动员中任取1人,抽到对主办方表示满意的男性运动员的概率为;②在犯错误的概率不超过1%的前提下可以认为是否对主办方表示满意与运动员的性别有关;③没有99.9%的把握认为是否对主办方表示满意与运动员的性别有关;则正确命题的个数为( )附:

男性运动员

女性运动员

对主办方表示满意

200

220

对主办方表示不满意

50

30

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两个三口之家,共个大人,个小孩,约定星期日乘红色、白色两辆轿车结伴郊游,每辆车最多乘坐人,其中两个小孩不能独坐一辆车,则不同的乘车方法种数是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别是椭圆的左右焦点,过点的直线交椭圆于两点,且的周长为12

(Ⅰ)求椭圆的方程

(Ⅱ)过点作斜率为的直线与椭圆交于两点,试判断在轴上是否存在点,使得是以为底边的等腰三角形若存在,求点横坐标的取值范围,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案