精英家教网 > 高中数学 > 题目详情
6.函数y=$\frac{lg(x+1)}{x-2}$的定义域是(  )
A.(-1,+∞)B.[-1,+∞)C.(-1,2)∪(2,+∞)D.[-1,2)∩(2,+∞)

分析 由对数式的真数大于0,分式的分母不等于0联立不等式组得答案.

解答 解:由$\left\{\begin{array}{l}{x+1>0}\\{x-2≠0}\end{array}\right.$,解得x>-1且x≠2.
∴函数y=$\frac{lg(x+1)}{x-2}$的定义域是(-1,2)∪(2,+∞).
故选:C.

点评 本题考查函数的定义域及其求法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若f(x)=-x2+ax+2+lg(2-|x|)(a∈R)是偶函数,且f(1-m)<f(m),则实数m的取值范围是(  )
A.($\frac{1}{2}$,+∞)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,2)D.(-1,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某射手射击一次击中10环、9环、8环的概率分别是0.3,0.3,0.2,那么他射击一次不够8环的概率是0.2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数y=f(x)是定义在R上的奇函数,且满足f(x+5)≥f(x),f(x+1)≤f(x),则f(2015)的值为(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.直线l过点P(1,4)分别交x轴的正方向和y轴正方向于A、B两点.
①当|OA|+|OB|最小时,求l的方程.
②当|PA|•|PB|最小时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).
(I) 求数列{an}的通项公式;
(Ⅱ) 若bn=(2n+1)an+2n+1,数列{bn}的前n项和为Tn,求满足不等式$\frac{{T}_{n}-2}{2n-1}$>2016的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ax3+bx2lnx,若f(x)在点(1,0)处的切线的斜率为2.
(1)求f(x)的解析式;
(2)求f(x)在[$\frac{1}{e}$,e]上的单调区间和最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=max+na-x(a>0且a≠1)为偶函数,则非零实数m,n满足(  )
A.m=-nB.m=nC.mn=1D.mn=-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)对任意实数x1,x2都有f(x1x2)=f(x1)+f(x2)成立,则f(1)=(  )
A.3B.2C.1D.0

查看答案和解析>>

同步练习册答案