精英家教网 > 高中数学 > 题目详情

【题目】如图是放置在桌面的某三棱柱的三视图,其中网格小正方形边长为1.若三棱柱表面上的两点在三视图中的对应点为,现一只蚂蚁要沿该三棱柱的表面(不包括下底面)从爬到,则所有路径里最短路径的长度为( )

A. B. C. D.

【答案】A

【解析】

将所经过的2个表面展开到同一个平面时连结这两点所得线段,分4种情况计算线段长度即可判断。

由三视图可得该三棱柱侧棱垂直于底面,底面为等腰直角三角形,且侧棱长为4,底面斜边长为4,为下底面一顶点,为上底面一直角边中点,如图所示.因不在同一表面,故在表面上从的所有路径中,至少要经过2个表面,且在每个表面里走直线最短,所以将所经过的2个表面展开到同一个平面时连结这两点的线段最短,共有下列4种情况如图:

图(1)可得最短;图(2)可得最短;图(3)可得,则最短;图(4)可得最短.显然按图(1)、(3)路径走更短,且最短路径为.

故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若的极值,求的值,并求的单调区间。

(2)若时,,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,左右焦点分别为,且椭圆经过点.

(1)求椭圆的标准方程;

(2)过椭圆的右顶点作两条相互垂直的直线,分别与椭圆交于点(均异于点),求证:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自小正方形的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)设点,直线与曲线交于不同的两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医药公司研发一种新的保健产品,从一批产品中抽取200盒作为样本,测量产品的一项质量指标值,该指标值越高越好.由测量结果得到如下频率分布直方图:

(Ⅰ)求,并试估计这200盒产品的该项指标的平均值;

(Ⅱ)① 用样本估计总体,由频率分布直方图认为产品的质量指标值服从正态分布,计算该批产品指标值落在上的概率;参考数据:附:若,则.

②国家有关部门规定每盒产品该项指标不低150均为合格,且按指标值的从低到高依次分为:合格、优良、优秀三个等级,其中为优良,不高于180为合格,不低于220为优秀,在①的条件下,设公司生产该产品1万盒的成本为15万元,市场上每盒该产品的等级售价(单位:元)如图表,求该公司每万盒的平均利润.

等级

合格

优良

优秀

价格

10

20

30

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是(

A.甲的数据分析素养优于乙B.乙的数据分析素养优于数学建模素养

C.甲的六大素养整体水平优于乙D.甲的六大素养中数学运算最强

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是否存在互不相同的质数p、q、r、s,使得它们的和为640,且都是完全平方数?若存在,求p、q、r、s的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),,曲线的极坐标方程为.

1)求直线的普通方程及曲线的直角坐标方程;

2)若直线与曲线交于两点,设中点为,求弦长以及.

查看答案和解析>>

同步练习册答案