精英家教网 > 高中数学 > 题目详情
若函数y=f(x)(x∈R)满足f(x+2 )=f(x),且x∈[-1,1]时,f(x)=|x|,函数y=g(x)是偶函数,且x∈(0,+∞)时,g(x)=|log3x|.则函数y=f(x)图象与函y=g(x)图象的交点个数为   
【答案】分析:结合函数的性质分别画出f(x),g(x)的简图,由图象观察交点个数.
解答:解:∵函数y=f(x)(x∈R)满足f(x+2 )=f(x),
∴它是周期函数,周期是2,
∵函数y=g(x)是偶函数
∴它的图象关于y轴对称.
画图:
由图知,共6个交点.
故填:6.
点评:数形结合法是常用的解题方法,先根据题意画出函数的图象,再结合图象解答问题.交点个数的问题常用此法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=f(x)的定义域是[0,2],则函数y=f(x+1)+f(x-1)的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x-1)的定义域为(1,2],则函数y=f(
1x
)的定义域为
{x|x≥1}
{x|x≥1}

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)满足f′(x)>f(x),则f(2012)与e2012f(0)的大小关系为
f(2012)>e2012f(0)
f(2012)>e2012f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f'(x)的图象关于直线x=-
1
2
对称,且f′(1)=0.
(Ⅰ)求实数a,b的值;
(Ⅱ)若对于任意实数x,
1
6
f′(x)+m>0
恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(2a-1)x-alnx,g(x)=-
4x
-alnx
(a∈R).
(1)a<0时,求f(x)的极小值;
(2)若函数y=f(x)与y=g(x)的图象在x∈[1,3]上有两个不同的交点M,N,求a的取值范围.

查看答案和解析>>

同步练习册答案