精英家教网 > 高中数学 > 题目详情
设命题p:关于x的方程x2+ax+1=0无实根;命题q:函数f(x)=lg(ax2+(a-2)x+
9
8
)的定义域为R,若命题“p或q”是真命题,“p且q”是假命题,求实数a的取值范围
(-2,
1
2
]∪[2,8)
(-2,
1
2
]∪[2,8)
分析:由方程x2+ax+1=0无实根可得,△=a2-4<0,解不等式可求P
由f(x)=lg(ax2+(a-2)x+
9
8
)的定义域为R,可得ax2+(a-2)x+
9
8
>0恒成立,结合二次函数的性质可求q的范围,然后由命题“p或q”是真命题,“p且q”是假命题可得p,q一真一假,可求
解答:解:∵方程x2+ax+1=0无实根
∴△=a2-4<0
∴-2<a<2
即p:-2<a<2
∵函数f(x)=lg(ax2+(a-2)x+
9
8
)的定义域为R,
∴ax2+(a-2)x+
9
8
>0恒成立
①a=0时,-2x+
9
8
>0
不恒成立
a>0
△=(a-2)2-
9a
2
<0

解可得,
1
2
<a<8

即q:
1
2
<a<8

∵命题“p或q”是真命题,“p且q”是假命题
∴p,q一真一假
若p真q假,则
-2<a<2
a≥8或a≤
1
2
,即-2<a≤
1
2

若p假q真,则
a≥2或a≤-2
1
2
<a<8
,即2≤a<8
综上可得,-2<a≤
1
2
或2≤a<8
故答案为:(-2,
1
2
]∪[2,8)
点评:本题主要考查了复合命题的真假关系的应用,解题的关键是灵活利用基本知识,准确求出相应参数的范围
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设命题P:关于x的方程x22ax-2a=0无实根,命题q:关于x的不等式x2+ax+4>0的解集为R.如果命题“p∧q”为假命题,“¬q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:关于x的方程4x2+4(a-2)x+1=0有实数根;命题q:函数y=lg(ax2-x+a)的定义域是R.若“p或q”为真,“p且q”为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于并的方程戈x2-x+a=0无实根,命题q:关于x的函数y=-x2-ax+1在[-1,+∞)上是减函数.若?q是真命题,p∨q是真命题,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知命题p:关于并的方程戈x2-x+a=0无实根,命题q:关于x的函数y=-x2-ax+1在[-1,+∞)上是减函数.若?q是真命题,p∨q是真命题,则实数a的取值范围是(  )
A.[2,+∞)B.[
1
4
,+∞)
C.(
1
4
,2)
D.(-∞,
1
4
)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源:2013年高考数学复习卷D(一)(解析版) 题型:选择题

已知命题p:关于并的方程戈x2-x+a=0无实根,命题q:关于x的函数y=-x2-ax+1在[-1,+∞)上是减函数.若¬q是真命题,p∨q是真命题,则实数a的取值范围是( )
A.[2,+∞)
B.[,+∞)
C.(,2)
D.(-∞,)∪(2,+∞)

查看答案和解析>>

同步练习册答案