精英家教网 > 高中数学 > 题目详情
若实数x,y满足约束条件
x≤4
x-y+3≥0
2x+y-6≥0
,则
2y
x+1
的取值范围为
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出约束条件
x≤4
x-y+3≥0
2x+y-6≥0
所对应的可行域,
2y
x+1
可看作点P(-1,0)与点(x,y)连线斜率的2倍,由斜率公式可得.
解答: 解:作出约束条件
x≤4
x-y+3≥0
2x+y-6≥0
所对应的可行域(如图阴影),
2y
x+1
可看作点P(-1,0)与点(x,y)连线斜率的2倍,
x=4
2x+y-6=0
可得A(4,-2),由
x-y+3=0
2x+y-6=0
可得B(1,4),
kPA=-
2
5
, kPB=2

2y
x+1
的取值范围为:[-
4
5
,4]

故答案为:[-
4
5
,4]
点评:本题考查简单线性规划,涉及直线的斜率公式,准确作图是解决问题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=Asin(2x+
π
6
)( A>0)的部分图象如图所示.
(Ⅰ)写出f(x)的最小正周期及 A,x0的值;
(Ⅱ)求f(x)在(-
π
4
π
3
)上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
lnx+k
ex
(其中k∈R,e=2.71828…是自然数的底数),f′(x)为f(x)的导函数.
(1)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若x∈(0,1]时,f′(x)=0都有解,求k的取值范围;
(3)若f′(1)=0,试证明:对任意x>0,f′(x)<
e-2+1
x2+x
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

某产品在某零售摊位的;零售价x(单位:元)与每天的销售量y(单位:个)的统计资料如表所示:由表可得回归直线方程为
y
=-4x+
a
,据此模型预测零售价为15元时,每天的销售量为
 

x16171819
y50344131

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,2n-1an=an-1(n∈N*,n≥2).
(1)求数列{an}的通项公式;
(2)此数列从第几项开始,这一项及以后各项均小于
1
1000

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四个函数f(x)=sin(sinx),g(x)=sin(cosx),h(x)=cos(sinx),φ(x)=cos(cosx)在x∈[-π,π]上的图象如图,则函数与序号匹配正确的是(  )
A、f(x)-①,g(x)-②,h(x)-③,φ(x)-④
B、f(x)-①,φ(x)-②,g(x)-③,h(x)-④
C、g(x)-①,h(x)-②,f(x)-③,φ(x)-④
D、f(x)-①,h(x)-②,g(x)-③,φ(x)-④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C1
x2
a2
-
y2
b2
=1(a>0,b>0)与C2
y2
b2
-
x2
a2
=1(a>0,b>0),给出下列四个结论:
①C1与C2的焦距相等;
②C1与C2的离心率相等;
③C1与C2的渐近线相同;
④C1的焦点到其渐近线的距离与C2的焦点到其渐近线的距离相等.
其中一定正确的结论是
 
(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高三年级共有300人参加数学期中考试,从中随机抽取4名男生和4名女生的试卷,获得某一道题的样本,该题得分的茎叶图如图.
(Ⅰ) 求样本的平均数;
(Ⅱ) 设该题得分大于样本的平均数为合格,根据样本数据估计该校高三年级有多少名同学此题成绩合格;
(Ⅲ)在这4名男生和4名女生中,分别随机抽取一人,求该题女生得分不低于男生得分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,1),
b
=(-2,-3),
c
=(2,0),且
c
=m
a
+n
b
,求m,n的值.

查看答案和解析>>

同步练习册答案