精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若函数上有两个零点,求的取值范围;

(2)设,当时, ,求的取值范围.

【答案】(1) (2)

【解析】试题分析:(1)求导得,可得上是减函数,在上是增函数,因为上有两个零点,需要满足 ,可求a的范围.

(2)求导可得上是减函数,在上是增函数,当时, ,只需,解得.

试题解析:(1)

,∴时, 时,

上是减函数,在上是增函数,

上有两个零点,∴

,∴.

(2)

时,

上是减函数,在上是增函数,

,由题意得,∴.

点晴:本题考查函数导数与单调性.确定零点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可结合导数知识确定极值点和单调区间从而确定其大致图象.方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】四棱锥中,底面为直角梯形,,且平面平面

(1)求证:

(2)在线段上是否存在一点,使二面角的大小为,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 分别为椭圆的左、右焦点,椭圆离心率,直线通过点,且倾斜角是45°.

(1)求椭圆的标准方程;

(2)若直线与椭圆交于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点, 轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为,曲线的极坐标方程为.

(1)设为参数,若,求直线的参数方程;

(2)已知直线与曲线交于,设,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一块矩形空地,要在这块空地上开辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知,绿地面积为.

(1)写出关于的函数关系式,并指出这个函数的定义域.

(2)为何值时,绿地面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左、右焦点为,右顶点为,上顶点为,若 轴垂直,且.

(1)求椭圆方程;

(2)过点且不垂直于坐标轴的直线与椭圆交于两点,已知点,当时,求满足的直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为A,B,C所对边,a+b=4,(2﹣cosA)tan =sinA.
(1)求边长c的值;
(2)若E为AB的中点,求线段EC的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,上顶点为,若直线的斜率为1,且与椭圆的另一个交点为 的周长为.

(1)求椭圆的标准方程;

(2)过点的直线(直线的斜率不为1)与椭圆交于两点,点在点的上方,若,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来城市共享单车的投放在我国各地迅猛发展,共享单车为人们出行提供了很大的便利,但也给城市的管理带来了一些困难,现某城市为了解人们对共享单车投放的认可度,对年龄段的人群随机抽取人进行了一次你是否赞成投放共享单车的问卷调查,根据调查结果得到如下统计表和各年龄段人数频率分布直方图:

组号

分组

赞成投放的人数

赞成投放的人数占本组的频率

第一组

第二组

第三组

第四组

第五组

第六组

)求 的值.

)在第四、五、六组赞成投放共享单车的人中,用分层抽样的方法抽取人参加共享单车骑车体验活动,求第四、五、六组应分别抽取的人数.

)在()中抽取的人中随机选派人作为领队,求所选派的人中第五组至少有一人的概率.

查看答案和解析>>

同步练习册答案