精英家教网 > 高中数学 > 题目详情
 如图所示,正方体ABCD—A1B1C1D1中,M、N分别是A1B1,B1C1的中点.问:
(1)AM和CN是否是异面直线?说明理由;
(2)D1B和CC1是否是异面直线?说明理由.
(1)不是异面直线(2)D1B与CC1是异面直线
 (1)不是异面直线.理由如下:
∵M、N分别是A1B1、B1C1的中点.
∴MN∥A1C1
又∵A1 D1D,而D1D  C1C,∴A1A    C1C,∴四边形A1ACC1为平行四边形.
∴A1C1∥AC,得到MN∥AC,
∴A、M、N、C在同一个平面内,
故AM和CN不是异面直线.
(2)是异面直线,证明如下:
假设D1B与CC1在同一个平面D1CC1内,
则B∈平面CC1D1,C∈平面CC1D1.
∴BC平面CC1D1
这与正方体ABCD—A1B1C1D1中BC⊥面CC1D1相矛盾.
∴假设不成立,故D1B与CC1是异面直线.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

棱台的各侧棱延长后(  )
A.相交于一点
B.不交于一点
C.仅有两条相交于一点
D.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

两个相同的正四棱锥组成如下图1所示的几何体,可放入棱长为1的正方体(图2)内,使正四棱锥的底面ABCD与正方体的某一个面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有(   )
A.1个B.2个C.3个D.无穷多个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

ABC是正三角形,线段EADC都垂直于平面ABC.设EA=AB=2a,DC=a,且FBE的中点,如图.

(1)求证:DF∥平面ABC;
(2)求证:AFBD;
(3)求平面BDF与平面ABC所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在矩形ABCD中,AB=2BC=2a,E为AB上一点,将B点沿线段EC折起至点P,连接PA、PC、PD,取PD的中点F,若有AF∥平面PEC.
(1)试确定E点位置;
(2)若异面直线PE、CD所成的角为60°,并且PA的长度大于a,
求证:平面PEC⊥平面AECD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正方体与直线                

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和左视图在下面画出(单位:cm).

(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;
(3)在所给直观图中连接BC′,证明:BC′∥平面EFG.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列结论不正确的是       (填序号).
①各个面都是三角形的几何体是三棱锥
②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥
③棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥
④圆锥的顶点与底面圆周上的任意一点的连线都是母线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在棱长为a的正方体ABCDABCD′中,EF分别是BCAD′的中点  
(1)求直线ACDE所成的角;
(2)求直线AD与平面BEDF所成的角;
(3)求面BEDF与面ABCD所成的角 

查看答案和解析>>

同步练习册答案