精英家教网 > 高中数学 > 题目详情
8.函数f(x)=x2+(2a-1)x+a-2的一个零点比1大,另一个零点比1小,则实数a的取值范围是(-∞,$\frac{2}{3}$).

分析 根据一元二次函数根的分布建立不等式关系进行求解即可.

解答 解:函数f(x)=x2+(2a-1)x+a-2的一个零点比1大,另一个零点比1小,
则f(1)<0,
即f(1)=1+2a-1+a-2=3a-2<0,
则a<$\frac{2}{3}$,
故实数a的取值范围是(-∞,$\frac{2}{3}$),
故答案为:(-∞,$\frac{2}{3}$)

点评 本题主要考查一元二次函数根的分布,根据条件建立不等式关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.将下列各根式写成分数指数幂的形式:
(1)$\root{5}{9}$;
(2)$\sqrt{\frac{3}{2}}$;
(3)$\frac{1}{\root{4}{{5}^{3}}}$;
(4)$\root{3}{{a}^{4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设全集为R,A={x|3<x<10},B={x|2≤x<7},求CR(A∪B)及(CRA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知非空集合A={x|-1≤x≤a},B={y|y=-2x,x∈A},C={y|y=$\frac{1}{x+2}$,x∈A},若C⊆B,则实数a的取值范围是[-1+$\frac{\sqrt{2}}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.含有三个实数的集合既可表示成{a,$\frac{b}{a}$,1},又可表示成{a2,a+b,0},则a2014+b2015=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=lnx+x-4的零点在区间(k,k+1)内,则整数k的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知a,b,c分别是△ABC三个内角A,B,C的对边,$b=\sqrt{7}$,$c=\sqrt{3}$,$B=\frac{π}{6}$,那么a等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)是定义域为(-∞,0)∪(0,+∞)的偶函数,在区间(-∞,0)上单调递减,且f(-$\frac{1}{2}$)=0,若x•[f(x)+f(-x)]<0,则x的取值范围是(-∞,-$\frac{1}{2}$)∪(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知对任意的x≥1,均有lnx-a(1-$\frac{1}{x}$)≥0.求实数a的取值范围.

查看答案和解析>>

同步练习册答案