【题目】如图①,四边形中,,,,,为的中点.将沿折起到的位置,如图②.
(Ⅰ)求证:平面平面;
(Ⅱ)若,求与平面所成角的正弦值.
【答案】(Ⅰ)证明见解析;(Ⅱ).
【解析】
(Ⅰ)在图①中,,,根据翻折的性质得出在图②中,,,利用线面垂直的判定定理得出平面,再利用面面垂直的判定定理可证得平面平面;
(Ⅱ)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,计算出平面的一个法向量,利用空间向量法可求得与平面所成角的正弦值.
(Ⅰ)因为四边形中,,,,,为的中点,
且,则四边形为矩形,所以,即,.
在图②中,,,
又因为,所以平面.
又因为平面,所以平面平面.
(Ⅱ)由得,
又,,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,
由,得、、、,
,.
设平面的法向量为,
则,即,令,得,可得,
又,设直线与平面所成角为,
所以.
因此,直线与平面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】如图,点是以为直径的圆上的动点(异于,),已知,,平面,四边形为平行四边形.
(1)求证:平面;
(2)当三棱锥的体积最大时,求平面与平面所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某度假酒店为了解会员对酒店的满意度,从中抽取50名会员进行调查,把会员对酒店的“住宿满意度”与“餐饮满意度”都分为五个评分标准:1分(很不满意);2分(不满意);3分(一般);4分(满意);5分(很满意).其统计结果如下表(住宿满意度为,餐饮满意度为)
(1)求“住宿满意度”分数的平均数;
(2)求“住宿满意度”为3分时的5个“餐饮满意度”人数的方差;
(3)为提高对酒店的满意度,现从且的会员中随机抽取2人征求意见,求至少有1人的“住宿满意度”为2的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】垃圾分类是对垃圾进行有效处置的一种科学管理方法,为了了解居民对垃圾分类的知晓率和参与率,引导居民积极行动,科学地进行垃圾分类,某小区随机抽取年龄在区间[25,85]上的50人进行调研,统计出年龄频数分布及了解垃圾分类的人数如表:
(1)填写下面2x2列联表,并判断能否在犯错误的概率不超过0.01的前提下认为以65岁为分界点居民对了解垃圾分类的有关知识有差异;
(2)若对年龄在[45,55),[25,35)的被调研人中各随机选取2人进行深入调研,记选中的4人中不了解垃圾分类的人数为X,求随机变量X的分布列和数学期望.
参考公式和数据K2,其中n=a+b+c+d.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一场突如其来的新冠肺炎疫情在全国蔓延,在党中央的坚强领导和统一指挥下,全国人民众志成城、团结一心,共抗疫情。每天测量体温也就成为了所有人的一项责任,一般认为成年人腋下温度(单位:℃)平均在36℃~37℃之间即为正常体温,超过37.1℃即为发热。发热状态下,不同体温可分成以下三种发热类型:低热:;高热:;超高热(有生命危险):.
某位患者因发热,虽排除肺炎,但也于12日至26日住院治疗. 医生根据病情变化,从14日开始,以3天为一个疗程,分别用三种不同的抗生素为该患者进行消炎退热. 住院期间,患者每天上午8:00服药,护士每天下午16:00为患者测量腋下体温记录如下:
抗生素使用情况 | 没有使用 | 使用“抗生素A”治疗 | 使用“抗生素B”治疗 | |||||
日期 | 12日 | 13日 | 14日 | 15日 | 16日 | 17日 | 18日 | 19日 |
体温(℃) | 38.7 | 39.4 | 39.7 | 40.1 | 39.9 | 39.2 | 38.9 | 39.0 |
抗生素使用情况 | 使用“抗生素C”治疗 | 没有使用 | |||||
日期 | 20日 | 21日 | 22日 | 23日 | 24日 | 25日 | 26日 |
体温(℃) | 38.4 | 38.0 | 37.6 | 37.1 | 36.8 | 36.6 | 36.3 |
(1)请你计算住院期间该患者体温不低于39℃的各天体温平均值;
(2)在18日—22日期间,医生会随机选取3天在测量体温的同时为该患者进行某一特殊项目“项目”的检查,求至少两天在高热体温下做“项目”检查的概率;
(3)抗生素治疗一般在服药后2-8个小时就能出现血液浓度的高峰,开始杀灭细菌,达到消炎退热效果.假设三种抗生素治疗效果相互独立,请依据表中数据,判断哪种抗生素治疗效果最佳,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列:A:a1,a2,…,an,B:b1,b2,…,bn.已知ai,bj∈{0,1}(i=1,2,…,n;j=1,2,…,n),定义n×n数表,其中xij.
(1)若A:1,1,1,0,B:0,1,0,0,写出X(A,B);
(2)若A,B是不同的数列,求证:n×n数表X(A,B)满足“xij=xji(i=1,2,…,n;j=1,2,…,n;ij)”的充分必要条件为“ak+bk=1(k=1,2,…,n)”;
(3)若数列A与B中的1共有n个,求证:n×n数表X(A,B)中1的个数不大于.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,.
(1)求证:B1C⊥AB;
(2)若∠CBB1=60°,AC=BC,且点A在侧面BB1C1C上的投影为点O,求二面角B﹣AA1﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,有下列四个结论:
①为偶函数;②的值域为;
③在上单调递减;④在上恰有8个零点,
其中所有正确结论的序号为( )
A.①③B.②④C.①②③D.①③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com