精英家教网 > 高中数学 > 题目详情
20.关于函数f(x)=$\frac{2}{x}$+lnx,下列说法错误的是(  )
A.x=2是f(x)的极小值点
B.函数y=f(x)-x有且只有1个零点
C.存在正实数k,使得f(x)>kx恒成立
D.对任意两个正实数x1,x2,且x2>x1,若f(x1)=f(x2),则x1+x2>4

分析 对选项分别进行判断,即可得出结论.

解答 解:f′(x)=$\frac{x-2}{{x}^{2}}$,∴(0,2)上,函数单调递减,(2,+∞)上函数单调递增,
∴x=2是f(x)的极小值点,即A正确;
y=f(x)-x=$\frac{2}{x}$+lnx-x,∴y′=$\frac{-{x}^{2}+x-2}{{x}^{2}}$<0,函数在(0,+∞)上单调递减,x→0,y→+∞,∴函数y=f(x)-x有且只有1个零点,即B正确;
f(x)>kx,可得k<$\frac{2}{{x}^{2}}+\frac{lnx}{x}$,令g(x)=$\frac{2}{{x}^{2}}+\frac{lnx}{x}$,则g′(x)=$\frac{-4+x-xlnx}{{x}^{3}}$,
令h(x)=-4+x-xlnx,则h′(x)=-lnx,∴(0,1)上,函数单调递增,(1,+∞)上函数单调递减,
∴h(x)≤h(1)<0,∴g′(x)<0,
∴g(x)=$\frac{2}{{x}^{2}}+\frac{lnx}{x}$在(0,+∞)上函数单调递减,函数无最小值,
∴不存在正实数k,使得f(x)>kx恒成立,即C不正确;
对任意两个正实数x1,x2,且x2>x1,(0,2)上,函数单调递减,(2,+∞)上函数单调递增,若f(x1)=f(x2),则x1+x2>4,正确.
故选:C.

点评 本题考查导数知识的运用,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知$\vec a=(1+cosα,sinα),\vec b=(1-cosβ,sinβ),\vec c=(1,0)$,α∈(0,π),β∈(π,2π),$\vec a$与$\vec c$的夹角为θ1,$\vec b$与$\vec c$的夹角为θ2,且${θ_1}-{θ_2}=\frac{π}{3},求sin\frac{α-β}{2}$=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={1,2,3,4},B={y|y=2x,x∈A},则A∩B=(  )
A.{1,2,3,4}B.{1,2}C.{2,3}D.{2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.定义:对于数列{xn},如果存在常数p,使对任意正整数n,总有(xn+1-p)(xn-p)<0成立,那么我们称数列{xn}为“p-摆动数列”.
(1)设an=2n-1,${b_n}={q^n}$(-1<q<0),n∈N*,判断数列{an}、{bn}是否为“p-摆动数列”,并说明理由;
(2)已知“p-摆动数列”{cn}满足:${c_{n+1}}=\frac{1}{{{c_n}+1}}$,c1=1.求常数p的值;
(3)设${d_n}={(-1)^n}•(\;2n-1)$,n∈N*,且数列{dn}的前n项和为Sn.求证:数列{Sn}是“p-摆动数列”,并求出常数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线y2=2px(p>0)上有两个动点A,B及一个定点M(x0,y0),F是抛物线的焦点,且|AF|,|MF|,|BF|成等差数列.求证:线段AB的垂直平分线经过定点Q(x0+p,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0,a2-b2=c2,c>0)与y轴正半轴的交点为B,点P在椭圆上,则|BP|的最大值为(  )
A.2bB.$\frac{{a}^{2}}{c}$C.2b或$\frac{{b}^{2}}{c}$D.2b或$\frac{{a}^{2}}{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设三条直线x-2y=1,2x+ky=3,3kx+4y=5交于一点,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设A={x∈N|$\frac{6}{2-x}$∈N}.用列举法表示集合A={-4,-1,0,1,3,4,5,8}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知奇函数f(x)为定义域在R上的可导函数,f(1)=0,当x>0时,xf′(x)-f(x)<0,则x2f(x)>0的解集是(  )
A.(-∞,-1)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-1,0)∪(0,1)D.(-1,0)∪(1,+∞)

查看答案和解析>>

同步练习册答案