【题目】若圆和圆关于直线对称,过点的圆与轴相切,则圆心的轨迹方程是( )
A. B.
C. D.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)φ)﹣cos(ωx+φ)(),x=0和x是函数的y=f(x)图象的两条相邻对称轴.
(1)求f()的值;
(2)将y=f(x)的图象向右平移个单位后,再将所得的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求y=g(x)的单调区间,并求其在[]上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆:,定点,是圆上的一动点,线段的垂直平分线交半径于点.
(1)求点的轨迹的方程;
(2)四边形的四个顶点都在曲线上,且对角线、过原点,若,求证:四边形的面积为定值,并求出此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列对任意满足,下面给出关于数列的四个命题:①可以是等差数列,②可以是等比数列;③可以既是等差又是等比数列;④可以既不是等差又不是等比数列;则上述命题中,正确的个数为( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆的圆心在直线.
(1)若圆与轴的正半轴相切,且该圆截轴所得弦的长为,求圆的标准方程;
(2)在(1)的条件下,直线与圆交于两点,,若以为直径的圆过坐标原点,求实数的值;
(3)已知点,圆的半径为3,且圆心在第一象限,若圆上存在点,使(为坐标原点),求圆心的纵坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某港口的水深(米)是时间(,单位:小时)的函数,下面是每天时间与水深的关系表:
经过长期观测,可近似的看成是函数
(1)根据以上数据,求出的解析式;
(2)若船舶航行时,水深至少要米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com