精英家教网 > 高中数学 > 题目详情

【题目】在等差数列 中, ,其前 项和为 ,等比数列 的各项均为正数, ,公比为 ,且
(Ⅰ)求
(Ⅱ)设数列 满足 ,求 的前 项和

【答案】解:(Ⅰ)设等差数列公差为
由题目列出各方程:


,解出


(Ⅱ)∵
,



【解析】(1)根据等差数列和等比数列的性质,联立两等式,解出数列{an}的公差,数列{bn}的公比,即可得到两个数列的通项公式。
(2)先用前n项和公式求出Sn , 即得cn , 运用裂项相消法将cn变形,然后再进行求和。
【考点精析】通过灵活运用等差数列的前n项和公式和等比数列的定义,掌握前n项和公式:;如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足 ,它的前项和为,且

(Ⅰ)求

(Ⅱ)已知等比数列满足 ,设数列的前项和为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场经营某种商品,在某周内获纯利(元)与该周每天销售这种商品数之间的一组数据关系如表:

(I)画出散点图;

(II)求纯利与每天销售件数之间的回归直线方程;

(III)估计当每天销售的件数为12件时,每周内获得的纯利为多少?

附注:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆 过定点 ,且在定圆 的内部与其相内切.
(1)求动圆圆心 的轨迹方程
(2)直线 交于 两点,与圆 交于 两点,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若平面点集 满足:任意点 ,存在 ,都有 ,则称该点集 是“ 阶聚合”点集。现有四个命题:
①若 ,则存在正数 ,使得 是“ 阶聚合”点集;
②若 ,则 是“ 阶聚合”点集;
③若 ,则 是“2阶聚合”点集;
④若 是“ 阶聚合”点集,则 的取值范围是 .
其中正确命题的序号为( )
A.①④
B.②③
C.①②
D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,点在直线上.数列满足

,且其前9项和为153.

)求数列的通项公式;

)设,数列的前项和为,求使不等式对一切都成立的最大正整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 “存在 ”,命题 :“曲线 表示焦点在 轴上的椭圆”,命题 “曲线 表示双曲线”
(1)若“ ”是真命题,求实数 的取值范围;
(2)若 的必要不充分条件,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为 ,其准线与 轴交于点 ,过 作斜率为 的直线 与抛物线交于 两点,弦 的中点为 的垂直平分线与 轴交于
(1)求 的取值范围;
(2)求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知顶点在单位圆上的 中,角 的对边分别为 ,且 .
(1)求 的值;
(2)若 ,求 的面积.

查看答案和解析>>

同步练习册答案