精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,平面,四边形是菱形,,且交于点上任意一点.

1)求证

2)已知二面角的余弦值为,若的中点,求与平面所成角的正弦值.

【答案】(1)见解析;(2)

【解析】

1)利用线面垂直的性质得,利用菱形的性质得,利用线面垂直的判定定理得平面,利用线面垂直得到线线垂直,从而得到

2)分别以轴,轴,轴的正方向建立空间直角坐标系,设,用坐标表示点,求得平面的法向量为,平面的法向量为,根据二面角的余弦值为,可求出,从而得到点的坐标,再利用向量的夹角公式,即可求得与平面所成角的正弦值.

1)∵平面,∴

又∵四边形为菱形,∴

,∴平面

平面,∴

2)连,在中,,∴平面

分别以轴,轴,轴的正方向建立空间直角坐标系.

,则

.

由(1)知,平面的一个法向量为

设平面 的一个法向量为,则由

,令,则

因二面角的余弦值为

,∴

与平面所成角为,∵

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数都是定义在上的奇函数, 当时,,则(4)的值为____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数fx)=aa为常数).

1)求a的值;

2)若函数gx)=|2x+1fx|k2个零点,求实数k的取值范围;

3)若x[2,﹣1]时,不等式fx恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年10月1日,在庆祝新中国成立70周年阅兵中,由我国自主研制的军用飞机和军用无人机等参阅航空装备分秒不差飞越天安门,壮军威,振民心,令世人瞩目.飞行员高超的飞行技术离不开艰苦的训练和科学的数据分析.一次飞行训练中,地面观测站观测到一架参阅直升飞机以千米/小时的速度在同一高度向正东飞行,如图,第一次观测到该飞机在北偏西的方向上,1分钟后第二次观测到该飞机在北偏东的方向上,仰角为,则直升机飞行的高度为________千米.(结果保留根号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的图像在处的切线方程;

2)求函数的极大值;

3)若恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将曲线上每个点的横坐标伸长为原来的(纵坐标不变),得到的图象,则下列说法正确的是(

A.的图象关于直线对称

B.上的值域为

C.的图象关于点对称

D.的图象可由的图象向右平移个单位长度得到

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的方程为,椭圆的离心率正好是双曲线的离心率的倒数,椭圆的短轴长等于抛物线上一点到抛物线焦点的距离.

1)求椭圆的标准方程;

2)若直线与椭圆的两个交点为两点,已知圆轴的交点分别为(点轴的正半轴),且直线与圆相切,求的面积与的面积乘积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调递增区间;

(2)内角的对边分别为,若,且,试求角和角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术·均输》中有如下问题:今有五人分十钱,令上二人所得与下三人等,问各得几何.其意思为已知甲、乙、丙、丁、戊五人分10钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?是古代的一种重量单位).这个问题中,甲所得为(

A.B.C.D.

查看答案和解析>>

同步练习册答案