精英家教网 > 高中数学 > 题目详情
3.已知锐角α终边经过点P(cos40°+1,sin40°).则锐角α等于(  )
A.20°B.40°C.60°D.80°

分析 利用二倍角公式化简,通过角为锐角求出角的大小即可.

解答 解:∵tanα=$\frac{sin40°}{cos40°+1}$=$\frac{2sin20°cos20°}{2co{s}^{2}20°}$=tan20°,
∴α=20°.
故选:A.

点评 本题考查三角函数的化简求值,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.校庆期间,某同学从2本相同的画册和3个相同的纪念章中,任取4件作为礼物赠送给4为校友,每人1件,则不同的赠送方法共有(  )
A.4种B.10种C.18种D.20种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知实系数多项式f(x)=x4+ax3+bx2+cx+d满足f(1)=2,f(2)=4,f(3)=6,则f(0)+f(4)的所有可能值集合为{32}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.淘宝卖家在某商品的所有买家中,随机选择男女买家各50名进行调查,他们的评分等级如表:
评分等级[0,1](1,2](2,3](3,4](4,5]
女(人数)2792012
男(人数)3918128
规定:评分等级在[0,3]内为不满意该商品,在(3,5]内为满意该商品.完成下列2×2列联表并帮助卖家判断:能否在犯错误的概率不超过0.05的前提下认为满意该商品与性别有关系?
满意该商品不满意该商品总计
321850
203050
总计5248100
参考数据:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设等比数列{an}的前n项和为Sn,已知an+1=2Sn+2(n∈N*
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成一个公差为dn的等差数列,
①在数列{dn}中是否存在三项dm,dk,dp(其中m,k,p成等差数列)成等比数列?若存在,求出这样的三项,若不存在,说明理由;
②记Tn=$\frac{1}{d_1}+\frac{1}{d_2}+\frac{1}{d_3}+…+\frac{1}{d_n}(n∈{N^*})$,求满足Tn≤$\frac{3}{4}$的n值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在以AE=2为直径的半圆周上,B,C,D分别为弧AE的四等分点.
(1)以O为起点,从A,B,C,D,E这5个点中任取一点为终点得到一个向量$\overrightarrow{a}$,求满足$\overrightarrow{a}$在$\overrightarrow{OA}$上的射影为正的概率;
(2)以O为起点,从A,B,C,D,E这5个点中任取两点分别为终点得到两个向量,求这两个向量垂直的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.f′(x)是函数f(x)的导数,函数$\frac{f(x)}{{e}^{x}}$是增函数(e=2.718281828…是自然对数的底数),f′(x)与f(x)的大小关系是(  )
A.f′(x)=f(x)B.f′(x)>f(x)C.f′(x)≤f(x)D.f′(x)≥f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某研究结构对高中学段学生的记忆能力x和识图能力y进行统计分析,得到如下数据:
x0123
y-11m8
若y与x的回归直线方程$\widehat{y}$=3x-$\frac{3}{2}$,则实数m的值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{4}$=1(a>2),F1、F2为椭圆的左、右焦点,A、B为椭圆的左、右顶点,点P为椭圆上异于A、B的动点,且直线PA、PB的斜率之积为-$\frac{1}{2}$.
(1)求椭圆的方程;
(2)若动直线l与椭圆有且仅有一个公共点,求证:点F1、F2到直线l的距离乘积为定值.

查看答案和解析>>

同步练习册答案