如图,在中,为边上的高,,,沿将翻折,使得,得到几何体。
(1)求证:;
(2)求与平面所成角的正切值。
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
如图,四边形为矩形,平面,为上的点,且平面.
(1)求证:;
(2)求三棱锥的体积;
(3)设在线段上,且满足,试在线段上确定一点,使得平面.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图:四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,平面PAD⊥平面ABCD,PA=BC=1,PD=AB=,E、F分别为线段PD和BC的中点.
(Ⅰ) 求证:CE∥平面PAF;
(Ⅱ) 在线段BC上是否存在一点G,使得平面PAG和平面PGC所成二面角的大小为60°?若存在,试确定G的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
图1,平面四边形关于直线对称,,,.把沿折起(如图2),使二面角的余弦值等于.
对于图二,完成以下各小题:
(Ⅰ)求两点间的距离;
(Ⅱ)证明:平面;
(Ⅲ)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图, 是边长为的正方形,平面,,,与平面所成角为.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)线段上是否存在点,使得平面?若存在,试确定点的位置;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)如图,已知四棱锥P—ABCD中,底面ABCD为菱形,PA平面ABCD,,BC=1,E为CD的中点,PC与平面ABCD成角。
(1)求证:平面EPB平面PBA;(2)求二面角P-BD-A 的余弦值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com