【题目】已知函数f(x)=(1+x)t﹣1的定义域为(﹣1,+∞),其中实数t满足t≠0且t≠1.直线l:y=g(x)是f(x)的图象在x=0处的切线.
(1)求l的方程:y=g(x);
(2)若f(x)≥g(x)恒成立,试确定t的取值范围;
(3)若a1,a2∈(0,1),求证: .注:当α为实数时,有求导公式(xα)′=αxα﹣1.
【答案】(1);(2);(3)见解析
【解析】
(1)根据函数的解析式求出导函数的解析式,求出切点坐标及切线的斜率(切点的导函数值),可得直线的方程;
(2)构造函数,若恒成立,即在上恒成立,即在上的最小值不小于0,分类讨论后可得满足条件的的取值范围;
(3)分和两种情况证明结论,并构造函数,先征得是单调减函数,进而得到结论.
(1)∵f(x)=(1+x)t﹣1
∴f'(x)=t(1+x)x﹣1,
∴f'(0)=t,
又f(0)=0,
∴l的方程为:y=tx;
(2)令h(x)=f(x)﹣g(x)=(1+x)t﹣tx﹣1,
h'(x)=t(1+x)t﹣1﹣t=t[(1+x)t﹣1﹣1]
当t<0时,(1+x)t﹣1﹣1单调递减,
当x=0时,h'(x)=0
当x∈(﹣1,0),h'(x)<0,h(x)单调递减;
当x∈(0,+∞),h'(x)>0,h(x)单调递增.
∴x=0是h(x)的唯一极小值点,
∴h(x)≥h(0)=0,f(x)≥g(x)恒成立;
当0<t<1时,(1+x)t﹣1﹣1单调递减,
当x=0时,h'(x)=0
当x∈(﹣1,0),h'(x)>0,h(x)单调递增;
当x∈(0,+∞),h'(x)<0,h(x)单调递减.
∴x=0是h(x)的唯一极大值点,
∴h(x)≤h(0)=0,不满足f(x)≥g(x)恒成立;
当t>1时,(1+x)t﹣1﹣1单调递增,
当x=0时,h'(x)=0
当x∈(﹣1,0),h'(x)<0,h(x)单调递减;
当x∈(0,+∞),h'(x)>0,h(x)单调递增.
∴x=0是h(x)的唯一极小值点,
∴h(x)≥h(0)=0,f(x)≥g(x)恒成立;
综上,t∈(﹣∞,0)∪(1,+∞);
证明:(3)当a1=a2,不等式显然成立;
当a1≠a2时,不妨设a1<a2
则
令,x∈[a1,a2]
下证φ(x)是单调减函数:
∵
易知a1﹣a2∈(﹣1,0),1+a1﹣a2∈(0,1),
由(2)知当t>1,(1+x)t>1+tx,x∈[a1,a2]
∴
∴
∴
∴φ'(x)<0,
∴φ(x)在[a1,a2]上单调递减.
∴φ(a1)>φ(a2),
即
∴.
综上,成立.
科目:高中数学 来源: 题型:
【题目】已知圆C的方程为:(x-3)2+(y-2)2=r2(r>0),若直线3x+y=3上存在一点P,在圆C上总存在不同的两点M,N,使得点M是线段PN的中点,则圆C的半径r的取值范围是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为调查高三年级学生的身高情况,按随机抽样的方法抽取100名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在的男生人数有16人.
(1)试问在抽取的学生中,男,女生各有多少人?
(2)根据频率分布直方图,完成下列的列联表,并判断能有多大(百分之几)的把握认为“身高与性别有关”?
总计 | |||
男生身高 | |||
女生身高 | |||
总计 |
(3)在上述100名学生中,从身高在之间的男生和身高在之间的女生中间按男、女性别分层抽样的方法,抽出6人,从这6人中选派2人当旗手,求2人中恰好有一名女生的概率.
参考公式:
参考数据:
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康。经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加。为了更好的制定2019年关于加快提升农民年收人力争早日脱贫的工作计划,该地扶贫办统计了2018年位农民的年收人并制成如下频率分布直方图:
(1)根据频率分布直方图,估计位农民的年平均收入(单位:千元)(同一组数据用该组数据区间的中点值表示);
(2)由频率分布直方图,可以认为该贫困地区农民年收入服从正态分布,其中近似为年平均收入,近似为样本方差,经计算得.利用该正态分布,求:
(i)在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?
(ii)为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了位农民。若每个农民的年收人相互独立,问:这位农民中的年收入不少于千元的人数最有可能是多少?
附:参考数据与公式
则①;②;③.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据《人民网》报道,“美国国家航空航天局( NASA)发文称,相比20年前世界变得更绿色了,卫星资料显示中国和印度的行动主导了地球变绿.”据统计,中国新增绿化面积的420/0来自于植树造林,下表是中国十个地区在2017年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)
单位:公顷
按造林方式分 | ||||||
地区 | 造林总面积 | 人工造林 | 飞播造林 | 新封山育林 | 退化林修复 | 人工更新 |
内蒙 | 618484 | 311052 | 74094 | 136006 | 90382 | 6950 |
河北 | 583361 | 345625 | 33333 | 135107 | 65653 | 3643 |
河南 | 149002 | 97647 | 13429 | 221117 | 15376 | 133 |
重庆 | 226333 | 100600 | 、 62400 | 63333 | ||
陕西 | 297642 | 184108 | 33602 | 63865 | 16067 | |
甘肃 | 325580 | 260144 | 57438 | 7998 | ||
新疆 | 263903 | 118105 | 6264 | 126647 | 10796 | 2091 |
青海 | 178414 | 16051 | 159734 | 2629 | ||
宁夏 | 91531 | 58960 | 22938 | 8298 | 1335 | |
北京 | 19064 | 10012、 | 4000 | 3999 | 1053 |
(1)请根据上述数据,分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区;
(2)在这十个地区中,任选一个地区,求该地区人工造林面积与造林总面积的比值不足50%的概率是多少?
(3)从上表新封山育林面积超过十万公顷的地区中,任选两个地区,求至少有一个地区退化林修复面积超过五万公顷的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心为坐标原点,焦点在轴上,离心率,以椭圆的长轴和短轴为对角线的四边形的周长为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若经过点的直线交椭圆于两点,是否存在直线 ,使得到直线的距离满足恒成立,若存在,请求出的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com