精英家教网 > 高中数学 > 题目详情
如图,四棱锥的底面是正方形,平面上的点,且.

(1)证明:
(2)若,求二面角的余弦值.
(1)详见解析;(2)二面角的余弦值为.

试题分析:(1)要证,先证平面,则要证明垂直于平面内的两条相交直线,先由正方形的对角线互相垂直得到,再由平面,得到,结合直线与平面垂直的判定定理得到平面,从而得到;(2)以为原点,所在的直线为轴建立空间直角坐标系,利用空间向量法求二面角的余弦值.
试题解析:(1)∵平面,∴
∵底面是正方形,∴,∴平面
平面,∴.
(2)以为原点,所在的直线为轴建立空间直角坐标系.
,则,因为
易知,
所以
设平面的法向量为,则
,令,得,同理可取平面的法向量
所以,所以二面角的余弦值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在直三棱柱中,AA1=AB=BC=3,AC=2,D是AC的中点.

(1)求证:B1C∥平面A1BD;
(2)求平面A1DB与平面DBB1夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.

(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角PACD的大小;
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

斜三棱柱,其中向量,三个向量之间的夹角均为,点分别在上且=4,如图

(Ⅰ)把向量用向量表示出来,并求
(Ⅱ)把向量表示;
(Ⅲ)求所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在四面体O-ABC中,点P为棱BC的中点.设
OA
=
a
OB
=
b
OC
=
c
,那么向量
AP
用基底{
a
b
c
}可表示为(  )
A.-
1
2
a+
1
2
b+
1
2
c
B.-a+
1
2
b+
1
2
c
C.a+
1
2
b+
1
2
c
D.
1
2
a+
1
2
b+
1
2
c

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=2,ACBC=1,则异面直线A1BAC所成角的余弦值是    (  ).
A.  B.C.  D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方体的棱长为分别是的中点.

⑴求多面体的体积;
⑵求与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图3所示,M是棱的中点,N是棱的中点.
(1)求异面直线所成角的正弦值;
(2)求的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.如图,在四面体OABC中,G是底面ABC的重心,则等于
A.B.
C.D.

查看答案和解析>>

同步练习册答案