精英家教网 > 高中数学 > 题目详情

在三棱柱ABC-A1B1C1中,已知 BC=1,BB1=2,∠BAC=30°,∠BCC1=90°,AB⊥侧面BB1C1C,则直线C1B与侧面ACC1A1所成角的正弦值为________.


分析:以BA为x轴,以BC为y轴,以BB1为z轴,建立空间直角坐标系,由BC=1,BB1=2,∠BAC=30°,∠BCC1=90°,AB⊥侧面BB1C1C,知,设面ACC1A1的法向量,则,所以,由此利用向量法能求出直线C1B与侧面ACC1A1所成角的正弦值.
解答:解:以BA为x轴,以BC为y轴,以BB1为z轴,建立如图所示的空间直角坐标系,
∵BC=1,BB1=2,∠BAC=30°,∠BCC1=90°,AB⊥侧面BB1C1C,
∴A(),B(0,0,0),C(0,1,0),C1(0,1,2),

设面ACC1A1的法向量


设直线C1B与侧面ACC1A1所成角为θ,
sinθ=|cos<>|=||=
故答案为:
点评:本题考查直线与平面所成角的正弦值的求法,解题时要认真审题,恰当地建立空间直角坐标系,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知三棱柱ABC-A1B1C1的三视图如图所示,其中主视图AA1B1B和左视图B1BCC1均为矩形,在俯视图△A1B1C1中,A1C1=3,A1B1=5,cos∠A1=
35

(1)在三棱柱ABC-A1B1C1中,求证:BC⊥AC1
(2)在三棱柱ABC-A1B1C1中,若D是底边AB的中点,求证:AC1∥平面CDB1
(3)若三棱柱的高为5,求三视图中左视图的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图:在正三棱柱ABC-A1 B1 C1中,AB=
AA13
=a,E,F分别是BB1,CC1上的点且BE=a,CF=2a.
(Ⅰ)求证:面AEF⊥面ACF;
(Ⅱ)求三棱锥A1-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=
5
,BC=4,在A1在底面ABC的投影是线段BC的中点O.
(1)求点C到平面A1ABB1的距离;
(2)求二面角A-BC1-B1的余弦值;
(3)若M,N分别为直线AA1,B1C上动点,求MN的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西)在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=
5
,BC=4,在A1在底面ABC的投影是线段BC的中点O.
(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;
(2)求平面A1B1C与平面BB1C1C夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•北京)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求
BDBC1
的值.

查看答案和解析>>

同步练习册答案