精英家教网 > 高中数学 > 题目详情

【题目】设抛物线的准线与轴交于,抛物线的焦点,以为焦点,离心率的椭圆与抛物线的一个交点为;自引直线交抛物线于两个不同的点,设.

(1)求抛物线的方程及椭圆的方程;

(2),求的取值范围.

【答案】(1);(2)

【解析】

(1)设椭圆的方程为运用离心率公式和点满足椭圆方程,解方程可得进而得到椭圆的方程;再由焦点坐标可得进而得到抛物线的方程;

(2)运用向量共线的坐标表示和联立直线方程和抛物线方程,运用韦达定理和弦长公式,及基本不等式,即可得到所求范围.

(1)设椭圆的标准方程为由题意得,解得

∴椭圆的方程为

∴点的坐标为,∴∴抛物线的方程是

(2)由题意得直线的斜率存在,设其方程为

消去整理得(*)∵直线与抛物线交于两点,①,②,

,③

由①③消去.

,即 ,将代入上式得, ,∵上单调递减,

,即,∴

,即的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于茎叶图的说法,结论错误的一个是( )

A. 甲的极差是29 B. 甲的中位数是25

C. 乙的众数是21 D. 甲的平均数比乙的大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;
(Ⅱ)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB= ,AF=1,M是线段EF的中点.

(1)求证AM∥平面BDE;
(2)求二面角A﹣DF﹣B的大小;
(3)试在线段AC上一点P,使得PF与CD所成的角是60°.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在上的函数满足:对任意的,当时,都有,则称是“非減函数”.

(1)若是“非減函数”,求的取值范围;

(2)若为周期函数,且为“非减函数”,证明是常值函数;

(3)设恒大于零,是定义在R上、恒大于零的周期函数,的最大值。函数。证明:“是周期函数”的充要条件“是常值函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面为矩形,且的中点.

(1)过点作一条射线,使得,求证:平面 平面

(2)求二面角的余弦值的绝对值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=k3n﹣m,且a1=3,a3=27.
(I)求证:数列{an}是等比数列;
(II)若anbn=log3an+1 , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下表为函数部分自変量取值及其对应函数值,为了便于研究,相关函数值取非整数值时,取值精确到0.01.

0.61

-0.59

-0.56

-0.35

0

0.26

0.42

1.57

3.27

0.07

0.02

-0.03

-0.22

0

0.21

0.20

-10.04

-101.63

据表中数据,研究该函数的一些性质;

(1)判断函数的奇偶性,并证明;

(2)判断函数在区间[0.55,0.6]上是否存在零点,并说明理由;

(3)判断的正负,并证明函数上是单调递减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有如下几个结论: ①相关指数R2越大,说明残差平方和越小,模型的拟合效果越好; ②回归直线方程:,一定过样本点的中心:③残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适; ④在独立性检验中,若公式,中的|ad-bc|的值越大,说明两个分类变量有关系的可能性越强.其中正确结论的个数有(  )个.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案