精英家教网 > 高中数学 > 题目详情

,

  其中 为常数,则   (   )

A. 492           B. 482        C. 452       D.472

A


解析:

两边求导,有:

  再对上式求导,有

再对上式令

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(1,cos(ωx-
π
6
))
b
=(2,2sin(ωx-
π
6
))
,其中ω为常数,且ω>0.
(1)若ω=1,且
a
b
,求tanx的值;
(2)设函数f(x)=
a
b
-2
,若f(x)的最小正周期为π,求f(x)在x∈[0,
π
2
]
时的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos2ωx-sin2ωx,sinωx)
b
=(
3
,2cosωx)
,设函数f(x)=
a
b
(x∈R)
的图象关于直线x=
π
2
对称,其中ω为常数,且ω∈(0,1).
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)若将y=f(x)图象上各点的横坐标变为原来的
1
6
,再将所得图象向右平移
π
3
个单位,纵坐标不变,得到y=h(x)的图象,若关于x的方程h(x)+k=0在区间[0,
π
2
]
上有且只有一个实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,且Sn=(1+λ)-λan,其中λ为常数,且λ≠-1,0,n∈N+
(1)证明:数列{an}是等比数列.
(2)设数列{an}的公比q=f(λ),数列{bn}满足b1=
1
2
,bn=f(bn-1)(n∈N+,n≥2),求数列{bn}的通项公式.
(3)设λ=1,Cn=an(
1
bn
-1)
,数列{Cn}的前n项和为Tn,求证:当n≥2时,2≤Tn<4.

查看答案和解析>>

科目:高中数学 来源:2011届浙江省温州中学高三月考数学文卷 题型:解答题

设数列的前n项和为,且对任意正整数n都成立,其中为常数,且,(1)求证:是等比数列;(2)设数列的公比,数列满足:,求数列的前项和

查看答案和解析>>

同步练习册答案