精英家教网 > 高中数学 > 题目详情
已知A,B为椭圆
x2
4
+
y2
3
=1
的左右两个顶点,F为椭圆的右焦点,P为椭圆上异于A、B点的任意一点,直线AP、BP分别交椭圆的右准线于M、N点,则△MFN面积的最小值是(  )
A、8B、9C、11D、12
分析:先设P(s,t),由题设条件得两直线PA,PB的方程,与准线方程联立,解出M,N两点的坐标,用s,t表示出线段MN的长度,再由点P在椭圆上,将点的坐标代入椭圆方程,用s表示出t,消去t,得到线段MN的长关于s的函数,又点F到准线的距离是3,由此MFN面积可表示为s的函数,由其形式知,可用判别式法求最小值
解答:解:设P(s,t),由题意直线PA的方程为
y
t
+
x-2
s+2
=1
,即,直线PB的方程为
y
t
+
x+2
s-2
=1

由于椭圆
x2
4
+
y2
3
=1
故a=2,b=
3
,c=1,故其右准线方程为x=
a2
c
=4,F(1,0),故F到准线的距离是3
∵直线AP、BP分别交椭圆的右准线于M、N点
∴M(4,
6
s+2
t
),N(4,
2
s-2
t

故有|MN|=|
6
s+2
t
-
2
s-2
t
|=|
4t(s-4)
s2-4
|
∴S2=
1
4
×|MN|2×9=
9
4
×|
4t(s-4)
s2-4
|①
又P(s,t)在椭圆上,故有t2=3-
s2
4
 代入①整理得S2=27×
(4-s)2
4-s2

令M2=
(4-s)2
4-s2
得(M2+1)s2-8s+16-4M2=0,此方程恒有根
故△=64-4(M2+1)(16-4M2)≥0
解得M2≥3,故M≥
3
或M≤-
3
(舍)
∴S2=27×
(4-s)2
4-s2
≥27×3
∴S≥9
故选B.
点评:本题主要考查了椭圆的标准方程和直线与椭圆的关系,考查了学生综合分析问题和解决问题的能力.解题的关键是根据意建立起面积关于坐标的函数,掌握用判别式法求值域也是本题的一个难点,解题时运算技巧很重要.本题运算量很大,要严谨,避免因运算失误导致解题失败.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>b>0F是方程
x2
b2
+
y2
a2
=1
的椭圆E的一个焦点,P、A,B是椭圆E上的点,
PF
与x轴平行,
PF
=
a
4
,设A(x1,y1),B(x2,y2),
i
=(
x1
b
y1
a
)
n
=(
x2
b
y2
a
)
i
n
原点O与A、B两点构成的△AOB的面积为S
(I )求椭圆E的离心率
(II)设椭圆E上的点与椭圆£的长轴的两个端点构成的三角形的面积的最大值等于2,S是否为定值?如果是,求出这个定值:如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知离心率为
2
2
的椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点M(
6
,1,O是坐标原点.
(1)求椭圆C的方程;
(2)已知点A、B为椭圆C上相异两点,且
OA
OB
,判定直线AB与圆O:x2+y2=
8
3
的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,CP是圆O的切线,P为切点,直线CO交圆O于A,B两点,AD⊥CP,垂足为D.
求证:∠DAP=∠BAP.
B.选修4-2:矩阵与变换
设a>0,b>0,若矩阵A=
.
a0
0b
.
把圆C:x2+y2=1变换为椭圆E:
x2
4
+
y2
3
=1.
(1)求a,b的值;(2)求矩阵A的逆矩阵A-1
C.选修4-4:坐标系与参数方程在极坐标系中,已知圆C:ρ=4cosθ被直线l:ρsin(θ-\frac{π}{6})=a截得的弦长为2
3
求实数a的值.
D.选修4-5:不等式选讲已知a,b是正数,求证:a2+4b2+
1
ab
≥4.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x与椭圆x2+
y2
a2
=1(a>1)交于A、B两点,点F为抛物线的焦点,若∠AFB=120°,则椭圆的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2为椭圆x2+
y2
2
=1
上的两个焦点,A,B是过焦点F1的一条动弦,则△ABF2的面积的最大值为(  )

查看答案和解析>>

同步练习册答案