精英家教网 > 高中数学 > 题目详情

【题目】如图,平面四边形ABCD,,将沿BD翻折到与面BCD垂直的位置.

证明:面ABC;

若E为AD中点,求二面角的大小.

【答案】(1)见证明;(2)

【解析】

推导出面BCD,从而,再求出,由此能证明平面ABC.

以B为原点,在平面BCD中,过B作BD的垂线为x轴,以BD为y轴,以BA为z轴,建立空间直角坐标系,利用向量法能求出二面角的大小.

证明:平面四边形ABCD,

面BCD,,面平面

面BCD,

平面ABC.

解:面BCD,如图以B为原点,在平面BCD中,过B作BD的垂线为x轴,

以BD为y轴,以BA为z轴,建立空间直角坐标系,

0,0,

是AD的中点,

令平面BCE的一个法向量为y,

,取,得

面ABC,平面ABC的一个法向量为

二面角的大小为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

1)设角的顶点在坐标原点,始边在轴的正半轴上,终边过点,求的值;

2)试讨论函数的基本性质(单调性、周期性)(直接写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某餐厅通过查阅了最近5次食品交易会参会人数 (万人)与餐厅所用原材料数量 (袋),得到如下统计表:

第一次

第二次

第三次

第四次

第五次

参会人数 (万人)

13

9

8

10

12

原材料 (袋)

32

23

18

24

28

(1)根据所给5组数据,求出关于的线性回归方程.

(2)已知购买原材料的费用 (元)与数量 (袋)的关系为

投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有15万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润销售收入原材料费用).

参考公式: .

参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数,其中为实数.

1)求实数的值;

2)用定义证明上是减函数;

3)若对于任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足.

(1)求函数f(x)的解析式;

(2)求函数g(x)的单调区间;

(3)给出定义:若str满足,则称st更接近于r,当x≥1时,试比较哪个更接近,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:过点,其左右焦点分别为,三角形的面积为

求椭圆C的方程;

已知A,B是椭圆C上的两个动点且不与坐标原点O共线,若的角平分线总垂直于x轴,求证:直线AB与两坐标轴围成的三角形一定是等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量与相应的生产能耗吨标准煤的几组对照数据

3

4

5

6

25

3

4

45

1请根据上表提供的数据用最小二乘法求出关于的线性回归方程

2已知该厂技术改造前100吨甲产品能耗为90吨标准煤试根据1求出的线性回归方程预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线的极坐标方程为,曲线的极坐标方程为,以极点为坐标原点,极轴为的正半轴建立平面直角坐标系.

(1)求的参数方程;

(2)已知射线,将逆时针旋转得到,且交于两点, 交于两点,求取得最大值时点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别是椭圆的左、右焦点,直线过点与椭圆交于两点,且的周长为.

1)求椭圆的标准方程;

2)是否存在直线使的面积为?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案