(06年江西卷)设的反函数为,若
,则 .
科目:高中数学 来源: 题型:
(06年江西卷理)如图,在四面体ABCD中,截面AEF经过四面体的内切球(与四个面都相切的球)球心O,且与BC,DC分别截于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥A-BEFD与三棱锥A-EFC的表面积分别是S1,S2,则必有( )
A.S1<S2 B.S1>S
查看答案和解析>>
科目:高中数学 来源: 题型:
(06年江西卷理)(12分)
如图,已知△ABC是边长为1的正三角形,M、N分别是
边AB、AC上的点,线段MN经过△ABC的中心G,
设ÐMGA=a()
(1)试将△AGM、△AGN的面积(分别记为S1与S2)表示为a的函数
(2)求y=的最大值与最小值
查看答案和解析>>
科目:高中数学 来源: 题型:
(06年江西卷理)(12分)
如图,椭圆Q:(a>b>0)的右焦点F(c,0),过点F的一动直线m绕点F转动,并且交椭圆于A、B两点,P是线段AB的中点
(1)求点P的轨迹H的方程
(2)在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q£ ),确定q的值,使原点距椭圆的右准线l最远,此时,设l与x轴交点为D,当直线m绕点F转动到什么位置时,三角形ABD的面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
(06年江西卷文)(12分)
如图,椭圆的右焦点为,过点的一动直线绕点转动,并且交椭圆于两点,为线段的中点.
(1)求点的轨迹的方程;
(2)若在的方程中,令,.
设轨迹的最高点和最低点分别为和.当为何值时,为一个正三角形?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com