精英家教网 > 高中数学 > 题目详情
从甲、乙两名运动员的若干次训练成绩中随机抽取6次,分别为
甲:7.7,7.8,8.1,8.6,9.3,9.5
乙:7.6,8.0,8.2,8.5,9.2,9.5
(1)根据以上的茎叶图,对甲、乙运动员的成绩作比较,写出两个统计结论;
(2)从甲、乙运动员六次成绩中各随机抽取1次成绩,求甲、乙运动员的成绩至少有一个高于8.5分的概率.
(3)经过对甲、乙运动员若干次成绩进行统计,发现甲运动员成绩均匀分布在[7.5,9.5]之间,乙运动员成绩均匀分布在[7.0,10]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.5分的概率.
分析:(I)根据茎叶图,我们结合甲乙两名运动员的成绩,我们可以求出两个人的平均成绩,从而比较出两个人的平均水平;也可计算出两个人的方差(或标准差),从而比较出两个人发挥的稳定性;也可计算出两个运动员成绩的中位数,找到他们的数据中心点.
(II)设甲乙成绩至少有一个高于8.5分为事件A,我们先计算出从甲、乙运动员六次成绩中各随机抽取1次成绩的所有抽取方法总数,和满足甲、乙运动员的成绩至少有一个高于8.5分的抽取方法,代入古典概型公式即可求出答案.
(III)根据已知中甲运动员成绩均匀分布在[7.5,9.5]之间,乙运动员成绩均匀分布在[7.0,10]之间,我们可以求出它所表示的平面区域的面积,再求出甲、乙成绩之差的绝对值小于0.5分对应的平面区域的面积,代入几何概型公式,即可得到答案.
解答:解:(Ⅰ)①由样本数据得
.
x
=8.5,
.
x
=8.5
,可知甲、乙运动员平均水平相同;
②由样本数据得s2=0.49,s2=0.44,乙运动员比甲运动员发挥更稳定;
③甲运动员的中位数为8.35,乙运动员的中位数为8.35…(4分)
(Ⅱ)设甲乙成绩至少有一个高于8.5分为事件A,则P(A)=1-
3×4
6×6
=
2
3
…(6分)
(Ⅲ)设甲运动员成绩为x,则x∈[7.5,9.5]乙运动员成绩为y,y∈[7,10]
7.5≤x≤9.5
7≤y≤10
|x-y|≤0.5
…(8分)
设甲乙运动员成绩之差的绝对值小于0.5的事件为B,则P(B)=1-
2+2
2×3
=
1
3
…(12分)
点评:本题考查的知识点是古典概型及其概率计算公式,几何概型及其概率计算公式,茎叶图,是统计和概率知识的综合考查,熟练掌握古典概型及几何概型求解概率的方法和步骤是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从甲、乙两名运动员的若干次训练成绩中随机抽取6次,分别为
甲:7.7,7.8,8.1,8.6,9.3,9.5
乙:7.6,8.0,8.2,8.5,9.2,9.5
(1)根据以上的茎叶图,对甲、乙运动员的成绩作比较,写出两个统计结论;
(2)从甲、乙运动员六次成绩中各随机抽取1次成绩,求甲、乙运动员的成绩至少有一个高于8.5分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

为迎接2012年伦敦奥运会,在著名的海滨城市青岛举行了一场奥运选拔赛,其中甲、乙两名运动员为争取最后一个参赛名额进行的7轮比赛的得分如茎叶图所示.
(1)若从甲运动员的每轮比赛的得分中任选3个不低于80且不高于90的得分,求甲的三个得分与其每轮比赛的平均得分的差的绝对值都不超过2的概率;
(2)若分别从甲、乙两名运动员的每轮比赛不低于80且不高于90的得分中任选1个,求甲、乙两名运动员得分之差的绝对值ξ的分布列与期望.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁沈阳二中等重点中学协作体高三领航高考预测(三)文数学卷(解析版) 题型:解答题

(本小题满分12分)从甲、乙两名运动员的若干次训练成绩中随机抽取6次,分别为甲:7.7,7.8,8.1,8.6,9.3,9.5.乙:7.6,8.0,8.2,8.5,9.2,9.5

(1)根据以上的茎叶图,对甲、乙运动员的成绩作比较,写出两个统计结论;

(2)从甲、乙运动员六次成绩中各随机抽取1次成绩,求甲、乙运动员的成绩至少有一个高于8.5分的概率。

(3)经过对甲、乙运动员若干次成绩进行统计,发现甲运动员成绩均匀分布在[7.5,9.5]之间,乙运动员成绩均匀分布在[7.0,10]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.5分的概率。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年黑龙江省哈尔滨市高三第三次模拟理科数学试题 题型:解答题

从甲、乙两名运动员的若干次训练成绩中随机抽取6次,分别为

甲:7.7,7.8,8.1,8.6,9.3,9.5

乙:7.6,8.0,8.2,8.5,9.2,9.5

   (1)根据以上的茎叶图,对甲、乙运动员的成绩作比较,写出两个统计结论;

(2)从甲、乙运动员六次成绩中各随机抽取1次成绩,求甲、乙运动员的成绩至少有一个高于8.5分的概率。

(3)经过对甲、乙运动员若干次成绩进行统计,发现甲运动员成绩均匀分布在[7.5,9.5]之间,乙运动员成绩均匀分布在[7.0,10]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.5分的概率。

 

查看答案和解析>>

同步练习册答案