精英家教网 > 高中数学 > 题目详情

解答题

已知函数f(x)=x3-x+c定义在区间[0,1]上,x1、x2∈[0,1]且x1≠x2

求证:(1)f(0)=f(1);

(2)|f(x2)-f(x1)|<2|x2-x1|;

(3)|f(x2)-f(x1)|<1.

答案:
解析:

  证明:(1)∵f(x)=x3-x+c,∴f(0)=c,

  ∴f(1)=c,∴f(0)=f(1).

  (2)|f(x2)-f(x1)|=|(x23-x2+c)-(x13-x1+c)|

  =|(x23-x13)-(x2-x1)|

  =|x2-x1|·|x22+x12+x1x2-1|.

  ∵x1,x2∈[0,1]且x1≠x2

  ∴x22+x12+x1x2∈(0,3).

  ∴|x22+x12+x1x2-1|<2,

  ∴|f(x2)-f(x1)|<2|x2-x1|.

  (3)∵f(0)=f(1),

  ∴|f(x2)-f(x1)|=|f(x2)-f(1)+f(0)-f(x1)|≤|f(x2)-f(1)|+|f(0)-f(x1)|<2|x2-1|+2|0-x1|.

  又∵x1,x2∈[0,1]

  ∴|f(x2)-f(x1)|<2(1-x2)+2x1=2-2x2+2x1  ①

  当x2>x1时,|f(x2)-f(x1)|<2|x2-x1|=2x2-2x1  ②

  ①+②得|f(x2)-f(x1)|<1.

  同理可证,当x2<x1时,也有|f(x2)-f(x1)|<1.


练习册系列答案
相关习题

科目:高中数学 来源:成功之路·突破重点线·数学(学生用书) 题型:044

已知函数f(x)=m(x+)的图象与函数h(x)=(x+)+2的图象关于点A(0,1)对称.

(1)求m的值;

(2)若g(x)=f(x)+在区间(0,2]上为减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2004全国各省市高考模拟试题汇编(天利38套)·数学 题型:044

已知函数f(x)的图像与函数h(x)=x++2的图像关于点A(0,1)对称.

(1)求f(x)的解析式;

(2)(文)若g(x)=f(x)·x+ax,且g(x)在区间(0,2]上为减函数,求实数a的取值范围;

(理)若g(x)=f(x)+,且g(x)在区间(0,2]上为减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:成功之路·突破重点线·数学(学生用书) 题型:044

已知函数f(x)=

(1)求f(x)的定义域;

(2)用定义判断f(x)的奇偶性;

(3)在[-π,π]上作出f(x)的图象;

(4)指出f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

解答题

已知函数f(x)的定义域是R,对任意xy∈R,都有f(xy)=f(x)+f(y),且x>0时,f(x)<0f(1)=2,求f(x)在[33]上的最大值和最小值.

 

查看答案和解析>>

同步练习册答案