精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD是直角梯形,AD∥BC,∠BAD=90°,BC=2AD.
(1)求证:AB⊥PD;
(2)若点E是线段PB的中点,求证:AE∥平面PCD.
分析:(1)由已知中四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,∠BAD=90°,我们易得PA⊥AB,AB⊥AD,由线面垂直的判定定理易得AB⊥平面PAD,根据线面垂直的定义,即可得到AB⊥PD;
(2)若点E是线段PB的中点,取PC的中点F,连接AE,EF,DF,由三角形中位线定理,我们判断四边形EFDA是平行四边形,结合空间中直线与平面平行的判定定理,即可得到AE∥平面PCD.
解答:精英家教网解:
(1)证明:∵PA⊥平面ABCD,AB?平面ABCD,
∴PA⊥AB.
∵AB⊥AD,PA∩AD=A,
∴AB⊥平面PAD,
∵PD?平面PAD,
∴AB⊥PD.(6分)
(2)因为点E为线段PB的中点,
取PC的中点F,连接AE,EF,DF,
则EF是△PBC中位线.
∴EF∥BC,EF=
1
2
BC

∵AD∥BC,AD=
1
2
BC

∴AD∥EF,AD=EF.
∴四边形EFDA是平行四边形,
∴AE∥DF.
∵AE?平面PCD,DF?平面PCD,
∴AE∥平面PCD.(12分)
点评:本题考查的知识点是直线与平面平行的判定及直线与平面垂直的性质,其中熟练掌握空间直线与平面平行的判定定理,及直线与平面垂直的判定定理和性质定理是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,
求证:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为线段PD上的动点,EH与平面PAD所成的最大角的正切值为
6
2
,求AP的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=60°,PD⊥AD.点E是BC边上的中点.
(1)求证:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县二模)如图,已知四棱锥P-ABCD的底面ABCD为正方形,PA⊥平面ABCD,E、F分别是BC,PC的中点,AB=2,AP=2.
(1)求证:BD⊥平面PAC;
(2)求二面角E-AF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)如图,已知四棱锥P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,点M,N分别在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求证:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步练习册答案