精英家教网 > 高中数学 > 题目详情
17.已知a>1,函数f(x)=loga(x+1),g(x)=2loga(2x+t),当x∈(-1,1),t∈[4,6]时,存在g(x)≤f(x)+4成立,则a的最小值为2.

分析 构造函数F(x)=g(x)-f(x),把f(x)和g(x)代入到F(x),然后利用对数的运算性质化简,转化为关于a的不等式,再运用基本不等式即可.

解答 解:令F(x)=g(x)-f(x),
∵f(x)=loga(x+1),g(x)=2loga(2x+t)(a>1),
∴x∈(-1,1),t∈[4,6)时,F(x)=g(x)-f(x)有最小值是4,
由F(x)=g(x)-f(x)=loga $\frac{(2x+t)^{2}}{x+1}$,x∈(-1,1),t∈[4,6),a>1,
∴令h(x)=$\frac{(2x+t)^{2}}{x+1}$=4(x+1)+4(t-2)+$\frac{{(t-2)}^{2}}{x+1}$,
∵-1<x<1,4≤t<6,
∴h(x)=4(x+1)+$\frac{{(t-2)}^{2}}{x+1}$+4(t-2)在(-1,0]上单调递减,在[0,1)上单调递增,
∴h(x)min=h(0)=4+(t-2)2+4(t-2)=[(t-2)+2]2=t2
∴F(x)min=logat2=4,
∴a4=t2
∵4≤t<6,
∴a4=t2≥16,
∴a≥2.
故a的最小值为2,
故答案为:2.

点评 此题考查对数的运算性质,要求学生灵活运用对数运算的性质,熟练运用化归思想解决恒成立问题,易错点在于h(x)=4(x+1)+$\frac{{(t-2)}^{2}}{x+1}$+4(t-2),该先把最小值解出,再令它等于4,转化为在t∈[4,6)上有解,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.以A(3,2),B(1,4)所连线段为直径的圆的方程是(x-2)2+(y-3)2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=2ax3+x2+2x+a.
(1)当a=0时,求函数的零点;
(2)证明对所有实数a,函数在区间(-1,1)上总有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.有下列四个命题:
①y=2x与y=log2x互为反函数,其图象关于直线y=x对称;
②已知函数f(x-1)=x2-2x+1,则f(5)=26;
③当a>0且a≠1时,函数f(x)=ax-2-3必过定点(2,-2);
④函数y=($\frac{1}{2}$)x的值域是(0,+∞).
你认为正确命题的序号是①③④(把正确的序号都写上).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=3tan(-2x+$\frac{π}{4}$)的单调区间为($\frac{kπ}{2}$-$\frac{π}{8}$,$\frac{kπ}{2}$+$\frac{3π}{8}$),k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.一条直线上 的两点在一个平面内,那么这条直线就在这个平面内.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知一个长方体的全面积为11,十二条棱的长度之和为24,求长方体外接球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知{αn}是等差数列,且a5+a17=4,那么它的前21项之和等于    (  )
A.42B.40$\frac{1}{2}$C.40D.21

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.不等式组$\left\{\begin{array}{l}{\frac{x-1}{2}<1}\\{-4+\frac{x+2}{3}<x}\end{array}\right.$的解集为{x|-5<x<3}.

查看答案和解析>>

同步练习册答案