精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为为参数,),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)若极坐标为的点在曲线C1上,求曲线C1与曲线C2的交点坐标;

(2)若点的坐标为,且曲线C1与曲线C2交于两点,求|PB||PD|

【答案】(1)(2)6

【解析】分析:1)点对应的直角坐标为(1,1),由曲线C1的参数方程知:曲线C1是过点(﹣1,3)的直线,利用点斜式可得曲线C1的方程.曲线C2的极坐标方程即,展开后,利用互化公式即可得出曲线C2的直角坐标方程联立即可得出交点坐标.

2)由直线参数方程可判断知:P在直线C1上,将参数方程代入圆的方程得:t2﹣4(cosα﹣sinα)t+6=0,设点B,D对应的参数分别为t1,t2,利用|PB||PD|=|t1||t2|=|t1t2|即可得出.

详解:(1)点对应的直角坐标为

由曲线的参数方程知:曲线是过点的直线,故曲线的方程为

而曲线展开得:

得直角坐标方程为

联立得,解得:

故交点坐标分别为

(2)由判断知:在直线上,将代入方程得:

,设点对应的参数分别为

,

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数是定义在上的函数,①若存在,使得成立,则函数上单调递增。②若存在,使得成立,则函数在上不可能单调递减. ③若存在对于任意都有成立,则函数在上递增。④对于任意的,都有成立,则函数在上单调递减。

则以上真命题的个数为(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数在定义域上为单调递增函数,求实数的取值范围;

2)设函数,若存在使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了保护学生的视力,课桌和椅子的高度都是按一定的关系配套设计的,研究表明:假设课桌的高度为,椅子的高度为,则y应是x的一次函数,下表列出两套符合条件的课桌和椅子的高度:

第一套

第二套

椅子高度

40.0

37.0

课桌高度

75.0

70.2

1)请你确定yx的函数关系式(不必写出x的取值范围);

2)现有一把高42.0 cm的椅子和一张高78.2cm的课桌,它们是否配套?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱,侧面 侧面,,,,为棱的中点,的中点.

(1) 求证:平面

(2) ,求三棱柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是函数的导函数,已知,且,则使得成立的的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCDA1B1C1D1中,已知底面ABCD是菱形,点P是侧棱C1C的中点.

1)求证:AC1∥平面PBD

2)求证:BDA1P

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在《周易》中,长横“ ”表示阳爻,两个短横“ ”表示阴爻,有放回地取阳爻和阴爻三次合成一卦,共有种组合方法,这便是《系辞传》所说:“太极生两仪,两仪生四象,四象生八卦”,有放回地取阳爻和阴爻一次有2种不同的情况,有放回地取阳爻和阴爻两次有四种不同的情况,有放回地取阳爻和阴爻三次有八种不同的情况,即为八卦,在一次卜卦中,恰好出现两个阳爻一个阴爻的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是( )

A. 互联网行业从业人员中后占一半以上

B. 互联网行业中从事技术岗位的人数超过总人数的

C. 互联网行业中从事运营岗位的人数后比前多

D. 互联网行业中从事运营岗位的人数后比后多

查看答案和解析>>

同步练习册答案