精英家教网 > 高中数学 > 题目详情

【题目】对于函数,若存在定义域内某个区间,使得上的值域也是,则称函数在定义域上封闭.如果函数上封闭,那么实数的取值范围是______.

【答案】

【解析】

先用定义证明函数上递增,再根据奇偶性可得函数上为增函数,然后讨论可得的单调性,,依题意可得的两个不同的实数解,由此可解得.,依题意可得,由此可推出.

.,,

因为,所以,

所以函数上递增,

又函数为奇函数,所以函数上为增函数,

,函数为增函数, 因为上的值域也是,所以,,

的两个不同的实数解,解得,

,

,为递减函数, 因为上的值域也是,所以, ,

因为,所以,

所以,所以,因为,所以,,

所以,所以,.

综上所述:.

故答案为: .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C:=1(a>b>0)点A、B分别是椭圆C的左顶点和上顶点直线AB与圆G:x2+y2(c是椭圆的半焦距)相离,P是直线AB上一动点过点P作圆G的两切线切点分别为M、N.

(1)若椭圆C经过两点求椭圆C的方程;

(2)当c为定值时求证:直线MN经过一定点E并求·的值(O是坐标原点);

(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆E :的焦距为4,两条准线间的距离为8AB分别为椭圆E的左、右顶点.

(1)求椭圆E 的标准方程;

(2)已知图中四边形ABCD 是矩形,且BC4,点MN分别在边BCCD上,AMBN相交于第一象限内的点P .①若MN分别是BCCD的中点,证明:P在椭圆E上;②若点P在椭圆E上,证明:为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,AB4AD2ECD的中点,将△ADE沿AE折起,得到如图2所示的四棱锥D1ABCE,其中平面D1AE⊥平面ABCE.

(1)证明:BE⊥平面D1AE

(2)FCD1的中点,在线段AB上是否存在一点M,使得MF∥平面D1AE,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设复数,其中xnynRnN*i为虚数单位,z1=3+4i,复数zn在复平面上对应的点为Zn.

1)求复数z2z3z4的值;

2)是否存在正整数n使得?若存在,求出所有满足条件的;若不存在,请说明理由;

3)求数列的前项之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度(图),且倾斜时底面的一条棱始终在桌面上(图均为容器的纵截面).

1)要使倾斜后容器内的溶液不会溢出,角的最大值是多少?

2)现需要倒出不少于的溶液,当时,能实现要求吗?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆两顶点,短轴长为4,焦距为2,过点的直线与椭圆交于两点.设直线与直线交于点.

1)求椭圆的方程;

2)求线段中点的轨迹方程;

3)求证:点的横坐标为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“总把新桃换旧符”(王安石)、“灯前小草写桃符”(陆游),春节是中华民族的传统节日,在宋代人们用写“桃符”的方式来祈福避祸,而现代人们通过贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿,某商家在春节前开展商品促销活动,顾客凡购物金额满50元,则可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件,若有4名顾客都领取一件礼品,则他们中有且仅有2人领取的礼品种类相同的概率是(

A.B.C.D.

查看答案和解析>>

同步练习册答案