精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sin2ωx+2
3
sinωxsin(
π
2
-ωx)
(ω>0)的最小正周期为π.
(I)求ω的值;
(II)求函数f(x)在区间[0,
3
]
上的取值范围.
分析:(Ⅰ)先根据倍角公式和两角和公式,对函数进行化简,再利用T=
,进而求得ω
(Ⅱ)由(Ⅰ)可得函数f(x)的解析式,再根据正弦函数的单调性进而求得函数f(x)的范围.
解答:解:(I)f(x)=1-cos2ωx+2
3
sinωxcosωx
=1-cos2ωx+
3
sin2ωx (2分)
=
3
sin2ωx-cos2ωx+1=2sin(2ωx-
π
6
)+1 (5分)
因为函数f(x)的最小正周期为π,且ω>0
,解得ω=1.
(Ⅱ)由(Ⅰ)得f(x)=2sin(2ωx-
π
6
)+1,
0≤x≤
3

-
π
6
≤2x-
π
6
6

-
1
2
≤sin(2x-
π
6
)≤1

∴0≤2sin(2ωx-
π
6
)+1≤3,
即f(x)的取值范围为[0,3].
点评:本题主要考查函数y=Asin(ωx+φ)的图象,三角函数式恒等变形,三角函数的值域.公式的记忆,范围的确定,符号的确定是容易出错的地方.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案