精英家教网 > 高中数学 > 题目详情
6.如图,四边形ABCD是正方形,PA⊥平面ABCD,EB∥PA,AB=PA=4,EB=2,F为PD的中点.
(1)求证:AF⊥PC;
(2)求证:BD∥平面PEC;
(3)求锐角二面角D-PC-E的余弦值.

分析 (1)以A为原点,分别以$\overrightarrow{AD}$、$\overrightarrow{AB}$、$\overrightarrow{AP}$的方向为x轴、y轴、z轴的正方向建立空间直角坐标系.求出相关点的坐标,通过计算$\overrightarrow{AF}•\overrightarrow{PC}=8+0+(-8)=0$,证明AF⊥PC.
(2)取PC的中点M,连接EM.证明BD∥EM.然后证明BD∥平面PEC.
(3)求出平面PCD的一个法向量.平面PCE的法向量,利用空间向量的数量积求解锐二面角D-PC-E的余弦值.

解答 (1)证明:依题意,PA⊥平面ABCD,如图,以A为原点,分别以$\overrightarrow{AD}$、$\overrightarrow{AB}$、$\overrightarrow{AP}$的方向为x轴、y轴、z轴的正方向建立空间直角坐标系.
依题意,可得A(0,0,0),B(0,4,0),C(4,4,0),D(4,0,0),P(0,0,4),E(0,4,2),F(2,0,2).
∵$\overrightarrow{AF}=(2,0,2)$,$\overrightarrow{PC}=(4,4,-4)$,
∴$\overrightarrow{AF}•\overrightarrow{PC}=8+0+(-8)=0$,
∴AF⊥PC.
(2)证明:取PC的中点M,连接EM.
∵M(2,2,2),$\overrightarrow{EM}=(2,-2,0)$,$\overrightarrow{BD}=(4,-4,0)$,
∴$\overrightarrow{BD}=2\overrightarrow{EM}$,
∴BD∥EM.
∵EM?平面PEC,BD?平面PEC,
∴BD∥平面PEC.
(3)解:∵AF⊥PD,AF⊥PC,PD∩PC=P,
∴AF⊥平面PCD,故$\overrightarrow{AF}=(2,0,2)$为平面PCD的一个法向量.
设平面PCE的法向量为$\overrightarrow n=(x,y,z)$,
∵$\overrightarrow{PC}=(4,4,-4)$,$\overrightarrow{PE}=(0,4,-2)$,
∴$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{PC}=0\\ \overrightarrow n•\overrightarrow{PE}=0\end{array}\right.$即$\left\{\begin{array}{l}4x+4y-4z=0\\ 4y-2z=0\end{array}\right.$
令y=1,得x=1,z=2,故$\overrightarrow n=(1,1,2)$.
∴$cos<\overrightarrow{AF},\overrightarrow n>=\frac{2+0+4}{{2\sqrt{2}•\sqrt{6}}}=\frac{{\sqrt{3}}}{2}$,
∴锐二面角D-PC-E的余弦值为$\frac{{\sqrt{3}}}{2}$.

点评 本题考查二面角的平面角的求法,直线与平面平行,直线与直线垂直的证明方法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知点A(-1,2),B(1,3),则向量$\overrightarrow{AB}$的坐标为(2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,底面ABCD是菱形,侧面PBC是直角三角形,∠PCB=90°,点E是PC的中点,且平面PBC⊥平面ABCD.
求证:
(1)AP∥平面BED;
(2)BD⊥平面APC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知曲线$y=\frac{1}{x}$.
(1)求满足斜率为$-\frac{1}{3}$的曲线的切线方程;
(2)求曲线过点P(1,0)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,在平行四边形ABCD中,$∠BAD=\frac{π}{3}$,AB=2,AD=1,若M、N分别是边BC、CD上的点,且满足$\frac{BM}{BC}=\frac{NC}{DC}=λ$,其中λ∈[0,1],则$\overrightarrow{AM}•\overrightarrow{AN}$的取值范围是(  )
A.[0,3]B.[1,4]C.[2,5]D.[1,7]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若双曲线$\frac{x^2}{3}-{y^2}=1$的左焦点在抛物线y2=2px的准线上,则p的值为(  )
A.2B.3C.4D.$4\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某单位生产A、B两种产品,需要资金和场地,生产每吨A种产品和生产每吨B种产品所需资金和场地的数据如表所示:
资源
产品
资金(万元)场地(平方米)
A2100
B3550
现有资金12万元,场地400平方米,生产每吨A种产品可获利润3万元;生产每吨B种产品可获利润2万元,分别用x,y表示计划生产A、B两种产品的吨数.
(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(2)问A、B两种产品应各生产多少吨,才能产生最大的利润?并求出此最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求过点P(-1,5)的圆(x-1)2+(y-2)2=4的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个几何体的三视图如图所示,则这个几何体的体积是(  )
A.2B.$\frac{1}{2}$C.3D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案