精英家教网 > 高中数学 > 题目详情

【题目】对于函数,若,则称的“不动点”;若,则称的“稳定点”.函数的“不动点”和“稳定点”的集合分别记为,即

)设函数,求集合

)求证:

)设函数,且,求证:

【答案】;(证明见解析;(证明见解析

【解析】

)由,解得;由,解得,,;(,则成立;若,设中任意一个元素,则有可得,故从而可得结果;①当时,的图象在轴的上方,可得对于恒成立,则.②当时,的图象在轴的下方,可得对于任意恒成立,则

)由

解得

,得

解得

)若

成立,

中任意一个元素,

则有

)由,得方程无实数解,

①当时,的图象在轴的上方,

所以任意恒成立,

即对于任意恒成立,

对于,则有成立,

∴对于恒成立,

②当时,的图象在轴的下方,

所以任意恒成立,

即对于恒成立,

对于实数,则有成立,

所以对于任意恒成立,

综上知,对于

时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣alnx+(a+1)x﹣(a>0).

(1)讨论函数f(x)的单调性;

(2)若f(x)≥﹣+ax+b恒成立,求a时,实数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数在点处的切线方程;

(2)求函数的单调区间;

(3) 求证:当时,恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,则下列命题中正确的个数是(

①当时,函数上有最小值;②当时,函数是单调增函数;③若,则;④方程可能有三个实数根.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中中,直线,圆的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.

(1)求直线和圆的极坐标方程;

(2)若直线与圆交于两点,且的面积是,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD中,AD∥BCADAB∠BCD45°∠BAD90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成四面体ABCD,则在四面体ABCD中,下列结论正确的是( )

A. 平面ABD⊥平面ABC B. 平面ADC⊥平面BDC

C. 平面ABC⊥平面BDC D. 平面ADC⊥平面ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等腰梯形ABCD(如图1所示),其中ABCDEF分别为ABCD的中点,且ABEF=2,CD=6,MBC中点.现将梯形ABCD沿着EF所在直线折起,使平面EFCB⊥平面EFDA(如图2所示),N是线段CD上一动点,且.

(1)求证:MN∥平面EFDA

(2)求三棱锥AMNF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线为参数),曲线为参数),以坐标原点为极点, 轴的正半轴为极轴建立直角坐标系.

(1)求曲线的极坐标方程,直线的普通方程;

(2)把直线向左平移一个单位得到直线,设与曲线的交点为 为曲线上任意一点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为梯形,AD∥BC,CD⊥BC,AD=2,AB=BC=3,PA=4,M为AD的中点,N为PC上一点,且PC=3PN.

(1)求证:MN∥平面PAB;

(2)求二面角PANM的余弦值.

查看答案和解析>>

同步练习册答案