精英家教网 > 高中数学 > 题目详情

【题目】已知数列的前项和为,若存在两项,使得,则的最小值为(

A.B.C.D.

【答案】B

【解析】

运用数列的递推式和等比数列的定义、通项公式可得an2n.求得m+n6m+n)(3),运用基本不等式,检验等号成立的条件,即可得到所求最小值.

Sn2an2,可得a1S12a12,即a12

n2时,Sn12an12,又Sn2an2

相减可得anSnSn12an2an1,即an2an1

{an}是首项为2,公比为2的等比数列.

所以an2n

aman64,即2m2n64

m+n6

所以m+n)(33+2),

当且仅当时取等号,即为mn

因为mn取整数,所以均值不等式等号条件取不到,则3+2),

验证可得,当m2n4,或m3n3,,取得最小值为

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给定椭圆,称圆心在原点,半径为的圆是椭圆准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.

(1)求椭圆的方程和其准圆方程;

(2)设椭圆短轴的一个端点为,长轴的一个端点为,点 准圆上一动点,求三角形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】再直角坐标系中,定义两点间的直角距离,现有下列命题:

①若轴上两点,则

②已知,则为定值

③原点到直线上任一点的直角距离的最小值为

④设,若点是在过的直线上,且点到点直角距离之和等于,那么满足条件的点只有.

其中的真命题是____________.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为弘扬中华传统文化,某校组织高一年级学生到古都西安游学.在某景区,由于时间关系,每个班只能在甲、乙、丙三个景点中选择一个游览.高一班的名同学决定投票来选定游览的景点,约定每人只能选择一个景点,得票数高于其它景点的入选.据了解,在甲、乙两个景点中有人会选择甲,在乙、丙两个景点中有人会选择乙.那么关于这轮投票结果,下列说法正确的是

该班选择去甲景点游览;

乙景点的得票数可能会超过

丙景点的得票数不会比甲景点高

三个景点的得票数可能会相等.

A. ①② B. ①③ C. ②④ D. ③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,给出下列结论:

上是减函数;

上的最小值为

上至少有两个零点.

其中正确结论的序号为_________(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,平面平面.设DE分别为PAAC中点.

(Ⅰ)求证:平面PBC

(Ⅱ)求证:平面PAB

(Ⅲ)试问在线段AB上是否存在点F,使得过三点DEF的平面内的任一条直线都与平面PBC平行?若存在,指出点F的位置并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分,1小问5分,2小问7分

图,椭圆的左、右焦点分别为的直线交椭圆于两点,且

1求椭圆的标准方程

2求椭圆的离心率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ab是异面直线,给出下列结论:

一定存在平面,使直线平面,直线平面

一定存在平面,使直线平面,直线平面

一定存在无数个平面,使直线b与平面交于一个定点,且直线平面.

则所有正确结论的序号为(

A.②③B.①③C.①②D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,都为等边三角形,且侧面与底面互相垂直,的中点,点在线段上,且为棱上一点.

(1)试确定点的位置,使得平面

(2)在(1)的条件下,求二面角的余弦值.

查看答案和解析>>

同步练习册答案