精英家教网 > 高中数学 > 题目详情
(2013•金山区一模)已知函数f(x)=sin(2x+
π
3
)+sin(2x-
π
3
)+
3
cos2x-m
,若f(x)的最大值为1.
(1)求m的值,并求f(x)的单调递增区间;
(2)在△ABC中,角A、B、C的对边a、b、c,若f(B)=
3
-1
,且
3
a=b+c
,试判断三角形的形状.
分析:(1)由和差角公式可得f(x)=1sin2x+
3
cos2x-m
=2sin(2x+
π
3
)-m
,从而可得f(x)max=2-m,可求m,要求函数的单调递增区间,只要令-
π
2
+2kπ≤2x+
π
3
π
2
+2kπ(k∈Z)
,即可求解
(2)因为f(B)=
3
-1
,可求B,A+C,由已知
3
a=b+c
结合正弦定理可可求sinA,即可求解A,从而可判断
解答:解:(1)f(x)=1sin2x+
3
cos2x-m
=2sin(2x+
π
3
)-m
…(3分)
f(x)max=2-m,所以m=1,…(4分)
-
π
2
+2kπ≤2x+
π
3
π
2
+2kπ(k∈Z)

单调增区间为(kπ-
12
,kπ+
π
12
)k∈Z
…(6分)
(2)因为f(B)=
3
-1
,则2sin(2B+
π
3
)-1=
3
-1

sin(2B+
π
3
)=
3
2

∵0<B<π
B=
π
6
…(8分)
3
a=b+c
,则
3
sinA=sinB+sinC

3
sinA=
1
2
+sin(
6
-A)
=
1
2
+sin
6
cosA-sinAcos
6
…(10分)
1
2
cosA-
3
2
sinA+
1
2
=0

sin(A-
π
6
)=
1
2

A=
π
3
,所以C=
π
2
,故△ABC为直角三角形…(12分)
点评:本题主要考查了三角函数的辅助角公式、两角和与差的三角函数、正弦定理等知识的综合应用,属于三角函数的中档试题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•金山区一模)若复数(1+2i)(1+ai)是纯虚数,则实数a的值是
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•金山区一模)计算极限:
lim
n→∞
(
2n2-2
n2+n+1
)
=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•金山区一模)若函数y=f(x) (x∈R)满足:f(x+2)=f(x),且x∈[-1,1]时,f(x)=|x|,函数y=g(x)是定义在R上的奇函数,且x∈(0,+∞)时,g(x)=log 3x,则函数y=f(x)的图象与函数y=g(x)的图象的交点个数为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•金山区一模)若
1
a
1
b
<0
,则下列结论不正确的是(  )

查看答案和解析>>

同步练习册答案